
1

COMPUTER CONCEPTS

AND PROGRAMMING IN C
MCA 103

SELF LEARNING MATERIAL

DIRECTORATE

OF DISTANCE EDUCATION

SWAMI VIVEKANAND SUBHARTI UNIVERSITY

MEERUT – 250 005,

UTTAR PRADESH (INDIA)

2

SLM Module Developed By :

Author:

Reviewed by :

Assessed by:

Study Material Assessment Committee, as per the SVSU ordinance No. VI (2)

Copyright © Gayatri Sales

DISCLAIMER

No part of this publication which is material protected by this copyright notice may be reproduced

or transmitted or utilized or stored in any form or by any means now known or hereinafter invented,

electronic, digital or mechanical, including photocopying, scanning, recording or by any information

storage or retrieval system, without prior permission from the publisher.

Information contained in this book has been published by Directorate of Distance Education and has

been obtained by its authors from sources be lived to be reliable and are correct to the best of their

knowledge. However, the publisher and its author shall in no event be liable for any errors,

omissions or damages arising out of use of this information and specially disclaim and implied

warranties or merchantability or fitness for any particular use.

Published by: Gayatri Sales

Typeset at: Micron Computers Printed at: Gayatri Sales, Meerut.

3

COMPUTER CONCEPTS AND PROGRAMMING IN C (MCA-103)

UNIT 1:

Introduction to any Operating System [Unix, Linux, Windows], Programming
Environment, Write and Execute the first program, Introduction to the Digital Computer;
Concept of an algorithm; termination and correctness. Algorithms to programs:
specification, top-down development and stepwise refinement. Introduction to
Programming, Use of high level programming language for the systematic development
of programs. Introduction to the design and implementation of correct, efficient and
maintainable programs, Structured Programming, Trace an algorithm to depict the logic,
Number Systems and conversion methods

UNIT 2:

Standard I/O in ―C‖, Fundamental Data Types and Storage Classes: Character types,
Integer, short, long, unsigned, single and double-precision floating point, storage
classes, automatic, register, static and external, Operators and Expressions: Using
numeric and relational operators, mixed operands and type conversion, Logical
operators, Bit operations, Operator precedence and associativity,

UNIT 3:

Conditional Program Execution: Applying if and switch statements, nesting if and else,
restrictions on switch values, use of break and default with switch, Program Loops and
Iteration: Uses of while, do and for loops, multiple loop variables, assignment operators,
using break and continue, Modular Programming: Passing arguments by value, scope
rules and global variables, separate compilation, and linkage, building your own
modules.

UNIT 4:

Arrays: Array notation and representation, manipulating array elements, using
multidimensional arrays, arrays of unknown or varying size, Structures: Purpose and
usage of structures, declaring structures, assigning of structures, Pointers to Objects:
Pointer and address arithmetic, pointer operations and declarations, using pointers as
function arguments, Dynamic memory allocation, defining and using stacks and linked
lists.

UNIT 5:

Sequential search, Sorting arrays, Strings, Text files, The Standard C Preprocessor:
Defining and calling macros, utilizing conditional compilation, passing values to the
compiler, The Standard C Library: Input/Output : fopen, fread, etc, string handling
functions, Math functions : log, sin, alike Other Standard C functions.

4

UNIT 1:

Introduction to any Operating System [Unix, Linux, Windows]

Unix:- UNIX is an operating system which was first developed in the 1960s, and has

been under constant development ever since. By operating system, we mean the suite

of programs which make the computer work. It is a stable, multi-user, multi-tasking

system for servers, desktops and laptops.

UNIX systems also have a graphical user interface (GUI) similar to Microsoft Windows

which provides an easy to use environment. However, knowledge of UNIX is required

for operations which aren't covered by a graphical program, or for when there is no

windows interface available, for example, in a telnet session.

Types of UNIX

There are many different versions of UNIX, although they share common

similarities. The most popular varieties of UNIX are Sun Solaris,

GNU/Linux, and MacOS X.

Here in the School, we use Solaris on our servers and workstations, and

Fedora Linux on the servers and desktop PCs.

The UNIX operating system

The UNIX operating system is made up of three parts; the kernel, the shell and the

programs.

The kernel

The kernel of UNIX is the hub of the operating system: it allocates time and memory to

programs and handles the filestore and communications in response to system calls.

As an illustration of the way that the shell and the kernel work together, suppose a user

types rm myfile (which has the effect of removing the file myfile). The shell searches

the filestore for the file containing the program rm, and then requests the kernel,

through system calls, to execute the program rm on myfile. When the process rm

5

myfile has finished running, the shell then returns the UNIX prompt % to the user,

indicating that it is waiting for further commands.

The shell

The shell acts as an interface between the user and the kernel. When a user logs in,

the login program checks the username and password, and then starts another

program called the shell. The shell is a command line interpreter (CLI). It interprets the

commands the user types in and arranges for them to be carried out. The commands

are themselves programs: when they terminate, the shell gives the user another prompt

(% on our systems).

The adept user can customise his/her own shell, and users can use different shells on

the same machine. Staff and students in the school have the tcsh shell by default.

The tcsh shell has certain features to help the user inputting commands.

Filename Completion - By typing part of the name of a command, filename or directory

and pressing the [Tab] key, the tcsh shell will complete the rest of the name

automatically. If the shell finds more than one name beginning with those letters you

have typed, it will beep, prompting you to type a few more letters before pressing the

tab key again.

History - The shell keeps a list of the commands you have typed in. If you need to

repeat a command, use the cursor keys to scroll up and down the list or type history for

a list of previous commands.

Files and processes

Everything in UNIX is either a file or a process.

A process is an executing program identified by a unique PID (process identifier).

A file is a collection of data. They are created by users using text editors, running

compilers etc.

Examples of files:

6

 a document (report, essay etc.)

 the text of a program written in some high-level programming language

 instructions comprehensible directly to the machine and incomprehensible to a

casual user, for example, a collection of binary digits (an executable or binary

file);

 a directory, containing information about its contents, which may be a mixture of

other directories (subdirectories) and ordinary files.

The Directory Structure

All the files are grouped together in the directory structure. The file-system is arranged

in a hierarchical structure, like an inverted tree. The top of the hierarchy is traditionally

called root (written as a slash /)

In the diagram above, we see that the home directory of the undergraduate

student "ee51vn" contains two sub-directories (docs and pics) and a file

called report.doc.

The full path to the file report.doc is "/home/its/ug1/ee51vn/report.doc"

7

Starting an UNIX terminal

To open an UNIX terminal window, click on the "Terminal" icon from

Applications/Accessories menus.

An UNIX Terminal window will then appear with a % prompt, waiting for you to start

entering commands.

8

Linux

LINUX is an operating system or a kernel distributed under an open-source license. Its
functionality list is quite like UNIX. The kernel is a program at the heart of the Linux
operating system that takes care of fundamental stuff, like letting hardware
communicate with software.

Why do you need an OS?

Every time you switch on your computer, you see a screen where you can perform
different activities like write, browse the internet or watch a video. What is it that makes

9

the computer hardware work like that? How does the processor on your computer know
that you are asking it to run a mp3 file?

Well, it is the operating system or the kernel which does this work. So, to work on your
computer, you need an Operating System(OS). In fact, you are using one as you read
this on your computer. Now, you may have used popular OS's like Windows, Apple OS
X, but here we will learn introduction to Linux operating system, Linux overview and
what benefits it offers over other OS choices.

Who created Linux?

Linux is an operating system or a kernel which germinated as an idea in the mind of
young and bright Linus Torvalds when he was a computer science student. He used to
work on the UNIX OS (proprietary software) and thought that it needed improvements.

However, when his suggestions were rejected by the designers of UNIX, he thought of
launching an OS which will be receptive to changes, modifications suggested by its
users.

The Lone Kernel & the early days

So Linus devised a Kernel named Linux in 1991. Though he would need programs like
File Manager, Document Editors, Audio -Video programs to run on it. Something as you
have a cone but no ice-cream on top.

As time passed by, he collaborated with other programmers in places like MIT and
applications for Linux started to appear. So around 1991, a working Linux operating
system with some applications was officially launched, and this was the start of one of
the most loved and open-source OS options available today.

The earlier versions of Linux OS were not so user-friendly as they were in use by
computer programmers and Linus Torvalds never had it in mind to commercialize his
product.

This definitely curbed the Linux's popularity as other commercially oriented Operating
System Windows got famous. Nonetheless, the open-source aspect of the Linux
operating system made it more robust.

Linux gets its due attention

10

The main advantage of Linux was that programmers were able to use the Linux Kernel
to design their own custom operating systems. With time, a new range of user-friendly
OS's stormed the computer world. Now, Linux is one of the most popular and widely
used Kernel, and it is the backbone of popular operating systems like Debian, Knoppix,
Ubuntu, and Fedora. Nevertheless, the list does not end here as there are thousands of
Best versions of Linux OS based on the Linux Kernel available which offer a variety of
functions to the users.

Linux Kernel is normally used in combination of GNU project by Dr. Richard Stallman.
All mordern distributions of Linux are actually distributions of Linux/GNU

The benefits of using Linux

Linux OS now enjoys popularity at its prime, and it's famous among programmers as
well as regular computer users around the world. Its main benefits are -

It offers a free operating system. You do not have to shell hundreds of dollars to get
the OS like Windows!

https://www.gnu.org/gnu/linux-and-gnu.html

11

 Being open-source, anyone with programming knowledge can modify it.

 It is easy to learn Linux for beginners

 The Linux operating systems now offer millions of programs/applications and
Linux softwares to choose from, most of them are free!

 Once you have Linux installed you no longer need an antivirus! Linux is a highly
secure system. More so, there is a global development community constantly
looking at ways to enhance its security. With each upgrade, the OS becomes
more secure and robust

 Linux freeware is the OS of choice for Server environments due to its stability
and reliability (Mega-companies like Amazon, Facebook, and Google use Linux
for their Servers). A Linux based server could run non-stop without a reboot for
years on end.

 Users, who are new to Linux, usually shun it by falsely considering it as a difficult
and technical OS to operate but, to state the truth, in the last few years Linux
operating systems have become a lot more user-friendly than their counterparts
like Windows, so trying them is the best way to know whether Linux suits you or
not.

 There are thousands of Best Linux OSs and Linux softwares available based on
the Linux Kernel; most of them offer state-of-the-art security and applications, all
of it for free!

 This is what Linux is all about, and now we will move on to how to install
Linux and which Distribution you should choose.

 I am asked to Learn Unix? Then why Linux?

 UNIX is called the mother of operating systems which laid out the foundation to

Linux. Unix is designed mainly for mainframes and is in enterprises and
universities. While Linux is fast becoming a household name for computer users,
developers, and server environment. You may have to pay for a Unix kernel
while in Linux it is free.

 But, the commands used on both the operating systems are usually the
same. There is not much difference between UNIX and Linux. Though they might
seem different, at the core, they are essentially the same. Since Linux is a clone
of UNIX. So learning one is same as learning another.

Windows

https://www.guru99.com/install-linux.html
https://www.guru99.com/install-linux.html
https://www.guru99.com/difference-unix-vs-linux.html

12

The oldest of all Microsoft‘s operating systems is MS-DOS (Microsoft Disk Operating
System). MS-DOS is a text-based operating system. Users have to type commands
rather than use the more friendly graphical user interfaces (GUI‘s) available today.
Despite its very basic appearance, MS-DOS is a very powerful operating system. There
are many advanced applications and games available for MS-DOS. A version of MS-
DOS underpins Windows. Many advanced administration tasks in Windows can only be
performed using MS-DOS.

The history of Microsoft Windows dates back to 1985, when Microsoft released
Microsoft Windows Version 1.01. Microsoft‘s aim was to provide a friendly user-interface
known as a GUI (graphical user interface) which allowed for easier navigation of the
system features. Windows 1.01 never really caught on. (The amazing thing about
Windows 1.01 is that it fitted on a single floppy disk!). In 1987 Microsoft revamped the
operating system and released Windows 2.03. The GUI was very slightly improved but
still looked too similar to Windows 1.01. The operating system again failed to capture a
wide audience.

Microsoft made an enormous impression with Windows 3.0 and 3.1. Graphics and
functionality were drastically improved. The Windows 3.x family provided multimedia
capabilities as well as vastly improved graphics and application support.

Building on the success of Windows 3.x, Microsoft released Microsoft Windows For
Workgroups 3.11. This gave Windows the ability to function on a network. It is not
uncommon to find companies still using Windows 3.11.

In 1993 Microsoft divided the operating system into two categories; Business and home
user. Windows NT (New Technology) was a lot more reliable than Windows 3.x.
Windows NT provided advanced network features. On the business front, Windows NT
continued to develop with the release of version 3.51. Different versions were provided
which offered different functionality. Server provided the higher network functions and
Workstation was mainly for the client machines.

In 1995 Windows went through a major revamp and Microsoft Windows 95 was
released. This provided greatly improved multimedia and a much more polished user
interface. The now familiar desktop and Start Menu appeared. Internet and networking
support was built in Although Windows 95 was a home user operating system, it proved
to be very popular in schools and businesses.

After the success of Windows 95, Microsoft improved the GUI interface of Windows NT
and released Windows NT 4.0. NT4 could be tailored to the size of the business, NT4
Server for small to medium sized businesses and Enterprise Server for larger networks.
Microsoft continued to improve the Windows format. Although Microsoft Windows 98
was very similar to Windows 95, it offered a much tidier display and enhanced
multimedia support.

Breaking with its own naming conventions, Microsoft released Windows 2000 (initially
called NT 5.0) for the business market. It appeared in 4 models: Professional -which

13

replaced Workstation, Server, Advanced Server and Datacenter Server catered for
differing business requirements.

Although Windows 2000 had a greatly improved user interface, the best of the
enhancements appeared on the server side. Active Directory was introduced which
allowed much greater control of security and organisation. Improvements to the overall
operating system allowed for easier configuration and installation.

One big advantage of Windows 2000 was that operating system settings could be
modified easily without the need to restart the machine. Windows 2000 proved to be a
very stable operating system that offered enhanced security and ease of administration.

The last incarnation of the Windows 9x family was Windows Millennium Edition (ME).
There were many different versions of Windows floating around at this stage that
Microsoft decided the next release of Windows would consolidate both the business and
home versions. Although Windows ME was visually similar to Windows 2000. Windows
ME was based on the Windows 9x line. Windows 9x/ME systems are not as secure and
stable as Windows NT and 2000 systems.

Because of the stability of Windows NT/2000, Microsoft decided to end the development
of the Windows 9x line, and merge both the consumer and business products. Microsoft
Windows XP comes as the Home Edition and Professional, each is based on Windows
2000. Windows 2000 Server has been upgraded to Windows 2003. This appears in four
variants: Web Server, Standard Server, Enterprise Server and Datacenter Server, each
fulfilling a different business role. Windows XP has a very polished look, but the overall
functionality is very similar to Windows 2000.

Programming Environment

The GT.M Programming Environment is described in the following sections.

Managing Data

The scope of M data is either process local or global.

 Local variables last only for the duration of the current session; GT.M deletes
them when the M process terminates.

 Global variables contain data that persists beyond the process. GT.M stores
global variables on disk. A Global Directory organizes global variables and
describes the organization of a database. The GT.M administrator uses the
Global Directory Editor (GDE) to create and manage Global Directories. A Global
Directory maps global names to a database file. GT.M uses this mapping when it
stores and retrieves globals from the database. Several Global Directories may
refer to a single database file.

14

For more information about the GT.M data management system, refer to the "Global
Directory Editor", "MUPIP" and "GT.M Journaling" chapters in the GT.M Administration
and Operations Guide.

Database Management Utilities

The Global Directory Editor (GDE) creates, modifies, maintains, and displays the
characteristics of Global Directories. GDE also maps LOCKs on resource names to the
region of the database specified for the corresponding global variables.

The M Peripheral Interchange Program (MUPIP) creates database files and provides
tools for GT.M database management and database journaling.

For more information regarding GT.M database utilities, refer to the "Global Directory
Editor", "MUPIP" and "GT.M Journaling" chapters in the GT.M Administration and
Operations Guide.

Managing Source Code

In the GT.M programming environment, source routines are generated and stored as
standard UNIX files. They are created and edited with standard UNIX text editors. GT.M
accepts source lines of up to 8192 bytes. When GT.M encounters a line with a length
greater than 8192 bytes in a source file, it emits an LSEXPECTED warning. This
warning identifies cases where a line greater than 8192 bytes is split into multiple lines,
which causes statements beyond the character prior to the limit to execute irrespective
of any starting IF, ELSE or FOR commands. The 8192 byte limit applies to XECUTE
command arguments and Direct Mode input as well.

GT.M is designed to work with the operating system utilities and enhances them when
beneficial. The following sections describe the process of programming and debugging
with GT.M and from the operating system.

Source File Management

In addition to standard M "percent" utilities, GT.M permits the use of the standard UNIX
file manipulation tools, for example, the diff, grep, cp, and mv commands. The GT.M
programmer can also use the powerful facilities provided by the UNIX directory
structure, such as time and date information, tree-structured directories, and file
protection codes.

GT.M programs are compatible with most source management software, for example,
RCS and SCCS.

Programming and Debugging Facilities

The GT.M programmer can use any UNIX text editor to create M source files. If you
generate a program from within the Direct Mode, it also accesses the UNIX text editor
specified by the environment variable EDITOR and provides additional capabilities to
automate and enhance the process.

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/ao/UNIX_manual/index.html
http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/ao/UNIX_manual/index.html
http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/ao/UNIX_manual/index.html
http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/ao/UNIX_manual/index.html

15

The GT.M programmer also uses the Direct Mode facility to interactively debug, modify,
and execute M routines. In Direct Mode, GT.M executes each M command immediately,
as if it had been in-line at the point where GT.M initiated Direct Mode.

The following is a list of additional enhancements available from the Direct Mode:

 The capability to issue commands from Direct Mode to the shell

 A command recall function to display and reuse previously entered commands

 Many language extensions that specifically optimize the debugging environment

The GT.M Compiler

The GT.M compiler operates on source files to produce object files consisting of
position-independent, native object code, which on some platforms can be linked into
shared object libraries. GT.M provides syntax error checking at compile-time and allows
you to enable or disable the compile-as-written mode. By default, GT.M produces an
object file even if the compiler detects errors in the source code. This compile-as-written
mode facilitates a flexible approach to debugging.

The Run-Time System

A GT.M programmer can execute an M routine from the shell or interactively, using the
M commands from Direct Mode.

The run-time system executes compile-as-written code as long as it does not encounter
the compile-time errors. If it detects an error, the run-time system suspends execution of
a routine immediately and transfers control to Direct Mode or to a user-written error
routine.

Automatic and Incremental Linking

The run-time system utilizes a GT.M facility called ZLINK to link in an M routine. When a
program or a Direct Mode command refers to an M routine that is not part of the current
process, GT.M automatically uses the ZLINK facility and attempts to link the referenced
routine (auto-ZLINK). The ZLINK facility also determines whether recompilation of the
routine is necessary. When compiling as a result of a ZLINK, GT.M typically ignores
errors in the source code.

The run-time system also provides incremental linking. The ZLINK command adds an M
routine to the current image. This feature facilitates the addition of code modifications
during a debugging session. The GT.M programmer can also use the feature to add
patches and generated code to a running M process.

Error Processing

The GT.M compiler detects and reports syntax errors at the following times:

o Compile-time - while producing the object module from a source file

16

o Run-time - while compiling code for M indirection and XECUTEs

o Run-time - when the user is working in Direct Mode.

The compile-time error message format displays the line containing the error and the
location of the error on the line. The error message also indicates what was incorrect
about the M statement.

GT.M can not detect certain types of errors associated with indirection, the functioning
of I/O devices, and program logic until run-time.

The compile-as-written feature allows compilation to continue and produces an object
module despite errors in the code. This permits testing of other pathways through the
code. The errors are reported at run-time, when GT.M encounters them in the execution
path.

The GT.M run-time system recognizes execution errors and reports them when they
occur. It also reports errors flagged by the compiler when they occur in the execution
path.

For more information, see Chapter 13: ―Error Processing‖.

Input-Output Processing

GT.M supports input and output processing with the following system components:

 Terminals

 Sequential disk files

 Mailboxes

 FIFOs

 Null devices

 Socket devices

GT.M input/output processing is device-independent. Copying information from one
device to another is accomplished without reformatting.

GT.M has special terminal-handling facilities. GT.M performs combined QIO operations
to enhance terminal performance. The terminal control facilities that GT.M provides
include escape sequences, control character traps, and echo suppression.

GT.M supports RMS sequential disk files that are accessed using a variety of
deviceparameters.

GT.M supports block I/O with fixed and variable length records for file-structured
(FILES-11) tapes and non-file-structured unlabeled (FOREIGN) tapes. GT.M supports
the ASCII character set for unlabeled FOREIGN and FILES-11 tapes. GT.M supports

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/webhelp/content/ch13.html

17

the EBCDIC character set for FOREIGN tapes only. GT.M also supports FOREIGN
DOS-11 and ANSI labelled tapes or stream format records. It also supports ASCII and
EBCDIC character sets.

GT.M uses permanent or temporary mailboxes fifos for interprocess communication.
GT.M treats mailboxes as record-structured I/O devices.

GT.M provides the ability to direct output to a null device. This is an efficient way to
discard unwanted output.

GT.M provides device-exception processing so that I/O exception handling need not be
combined with process-related exception conditions. The OPEN, USE, and CLOSE
EXCEPTION parameters define an XECUTE string as an error handler for an I/O
device.

Integrating GT.M with Other Languages

GT.M offers capabilities that allow you to optimize your programming environment.
These include allowing you to call into M routines from programs written in other
programming languages, access your M databases with interfaces that provide
functionality equivalent to M intrinsic database functions, and to alter your programming
environment when working with languages other than American English. These include
allowing you to call programs written in other programming languages that support C-
like interfaces and to alter your programming environment when working with languages
other than American English. This capability is described in more detail in chapters
throughout this manual.

Access to Non-M Routines

GT.M routines can call external (non-M) routines using the external call function. This
permits access to functions implemented in other programming languages. For more
information, see Chapter 11: ―Integrating External Routines‖.

Internationalization

GT.M allows the definition of alternative collation sequences and pattern matching
codes for use with languages other than English. Chapter 12:
―Internationalization‖ describes the details and requirements of this functionality.

Write and Execute the first program

Node.js is a popular open-source runtime environment that can
execute JavaScript outside of the browser using the V8 JavaScript engine, which is the
same engine used to power the Google Chrome web browser‘s JavaScript execution.
The Node runtime is commonly used to create command line tools and web servers.

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/webhelp/content/ch11.html
http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/webhelp/content/ch12.html
http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/webhelp/content/ch12.html
https://nodejs.org/
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://www.google.com/chrome/

18

Learning Node.js will allow you to write your front-end code and your back-end code in
the same language. Using JavaScript throughout your entire stack can help reduce time
for context switching, and libraries are more easily shared between your back-end
server and front-end projects.

Also, thanks to its support for asynchronous execution, Node.js excels at I/O-intensive
tasks, which is what makes it so suitable for the web. Real-time applications, like video
streaming, or applications that continuously send and receive data, can run more
efficiently when written in Node.js.

In this tutorial you‘ll create your first program with the Node.js runtime. You‘ll be
introduced to a few Node-specific concepts and build your way up to create a program
that helps users inspect environment variables on their system. To do this, you‘ll learn
how to output strings to the console, receive input from the user, and access
environment variables.

Prerequisites

To complete this tutorial, you will need:

 Node.js installed on your development machine. This tutorial uses Node.js
version 10.16.0. To install this on macOS or Ubuntu 18.04, follow the steps
in How to Install Node.js and Create a Local Development Environment on
macOS or the ―Installing Using a PPA‖ section of How To Install Node.js on
Ubuntu 18.04.

 A basic knowledge of JavaScript, which you can find here: How To Code in
JavaScript.

Step 1 — Outputting to the Console

To write a ―Hello, World!‖ program, open up a command line text editor such
as nano and create a new file:

 nano hello.js

Copy
With the text editor opened, enter the following code:

hello.js

console.log("Hello World");
Copy

https://www.digitalocean.com/community/tutorials/how-to-write-asynchronous-code-in-node-js
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-and-create-a-local-development-environment-on-macos
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript

19

The console object in Node.js provides simple methods to write to stdout, stderr, or to
any other Node.js stream, which in most cases is the command line. The log method
prints to the stdout stream, so you can see it in your console.

In the context of Node.js, streams are objects that can either receive data, like
the stdout stream, or objects that can output data, like a network socket or a file. In the
case of the stdout and stderr streams, any data sent to them will then be shown in the
console. One of the great things about streams is that they‘re easily redirected, in which
case you can redirect the output of your program to a file, for example.

Save and exit nano by pressing CTRL+X, when prompted to save the file, press Y. Now
your program is ready to run.

Step 2 — Running the Program

To run this program, use the node command as follows:

 node hello.js

Copy
The hello.js program will execute and display the following output:

Output

 Hello World
The Node.js interpreter read the file and executed console.log("Hello World"); by calling
the log method of the global console object. The string "Hello World" was passed as an
argument to the log function.

Although quotation marks are necessary in the code to indicate that the text is a string,
they are not printed to the screen.

Having confirmed that the program works, let‘s make it more interactive.

Step 3 — Receiving User Input via Command Line Arguments

Every time you run the Node.js ―Hello, World!‖ program, it produces the same output. In
order to make the program more dynamic, let‘s get input from the user and display it on
the screen.

Command line tools often accept various arguments that modify their behavior. For
example, running node with the --version argument prints the installed version instead
of running the interpreter. In this step, you will make your code accept user input via
command line arguments.

https://www.digitalocean.com/community/tutorials/how-to-work-with-strings-in-javascript

20

Create a new file arguments.js with nano:

 nano arguments.js

Copy
Enter the following code:

arguments.js

console.log(process.argv);
Copy
The process object is a global Node.js object that contains functions and data all related
to the currently running Node.js process. The argv property is an array of strings
containing all the command line arguments given to a program.

Save and exit nano by typing CTRL+X, when prompted to save the file, press Y.

Now when you run this program, you provide a command line argument like this:

 node arguments.js hello world

Copy
The output looks like the following:

Output

 ['/usr/bin/node',

 '/home/sammy/first-program/arguments.js',

 'hello',

 'world']
The first argument in the process.argv array is always the location of the Node.js binary
that is running the program. The second argument is always the location of the file
being run. The remaining arguments are what the user entered, in this
case: hello and world.

We are mostly interested in the arguments that the user entered, not the default ones
that Node.js provides. Open the arguments.js file for editing:

 nano arguments.js

Copy
Change console.log(process.arg); to the following:

arguments.js

https://www.digitalocean.com/community/tutorials/how-to-define-functions-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-arrays-in-javascript

21

console.log(process.argv.slice(2));
Copy
Because argv is an array, you can use JavaScript‘s built-in slice method that returns a
selection of elements. When you provide the slice function with 2 as its argument, you
get all the elements of argv that comes after its second element; that is, the arguments
the user entered.

Re-run the program with the node command and the same arguments as last time:

 node arguments.js hello world

Copy
Now, the output looks like this:

Output

 ['hello', 'world']
Now that you can collect input from the user, let‘s collect input from the program‘s
environment.

Step 4 — Accessing Environment Variables

Environment variables are key-value data stored outside of a program and provided by
the OS. They are typically set by the system or user and are available to all running
processes for configuration or state purposes. You can use Node‘s process object to
access them.

Use nano to create a new file environment.js:

 nano environment.js

Copy
Add the following code:

environment.js

console.log(process.env);
Copy
The env object stores all the environment variables that are available when Node.js is
running the program.

Save and exit like before, and run the environment.js file with the node command.

 node environment.js

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-accessor-methods#slice()

22

Copy
Upon running the program, you should see output similar to the following:

Output

{ SHELL: '/bin/bash',

 SESSION_MANAGER:

 'local/digitalocean:@/tmp/.ICE-unix/1003,unix/digitalocean:/tmp/.ICE-unix/1003',

 COLORTERM: 'truecolor',

 SSH_AUTH_SOCK: '/run/user/1000/keyring/ssh',

 XMODIFIERS: '@im=ibus',

 DESKTOP_SESSION: 'ubuntu',

 SSH_AGENT_PID: '1150',

 PWD: '/home/sammy/first-program',

 LOGNAME: 'sammy',

 GPG_AGENT_INFO: '/run/user/1000/gnupg/S.gpg-agent:0:1',

 GJS_DEBUG_TOPICS: 'JS ERROR;JS LOG',

 WINDOWPATH: '2',

 HOME: '/home/sammy',

 USERNAME: 'sammy',

 IM_CONFIG_PHASE: '2',

 LANG: 'en_US.UTF-8',

 VTE_VERSION: '5601',

 CLUTTER_IM_MODULE: 'xim',

 GJS_DEBUG_OUTPUT: 'stderr',

 LESSCLOSE: '/usr/bin/lesspipe %s %s',

 TERM: 'xterm-256color',

 LESSOPEN: '| /usr/bin/lesspipe %s',

 USER: 'sammy',

 DISPLAY: ':0',

 SHLVL: '1',

 PATH:

'/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/sn

ap/bin',

 DBUS_SESSION_BUS_ADDRESS: 'unix:path=/run/user/1000/bus',

 _: '/usr/bin/node',

 OLDPWD: '/home/sammy' }

23

Keep in mind that many of the environment variables you see are dependent on the
configuration and settings of your system, and your output may look substantially
different than what you see here. Rather than viewing a long list of environment
variables, you might want to retrieve a specific one.

Step 5 — Accessing a Specified Environment Variable

In this step you‘ll view environment variables and their values using the
global process.env object and print their values to the console.

The process.env object is a simple mapping between environment variable names and
their values stored as strings. Like all objects in JavaScript, you access an individual
property by referencing its name in square brackets.

Open the environment.js file for editing:

 nano environment.js

Copy
Change console.log(process.env); to:

environment.js

console.log(process.env["HOME"]);
Copy
Save the file and exit. Now run the environment.js program:

 node environment.js

Copy
The output now looks like this:

Output

 /home/sammy
Instead of printing the entire object, you now only print the HOME property
of process.env, which stores the value of the $HOME environment variable.

Again, keep in mind that the output from this code will likely be different than what you
see here because it is specific to your system. Now that you can specify the
environment variable to retrieve, you can enhance your program by asking the user for
the variable they want to see.

Step 6 — Retrieving An Argument in Response to User Input

https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript

24

Next, you‘ll use the ability to read command line arguments and environment variables
to create a command line utility that prints the value of an environment variable to the
screen.

Use nano to create a new file echo.js:

 nano echo.js

Copy
Add the following code:

echo.js

const args = process.argv.slice(2);

console.log(process.env[args[0]]);
Copy
The first line of echo.js stores all the command line arguments that the user provided
into a constant variable called args. The second line prints the environment variable
stored in the first element of args; that is, the first command line argument the user
provided.

Save and exit nano, then run the program as follows:

 node echo.js HOME

Copy
Now, the output would be:

Output

 /home/sammy
The argument HOME was saved to the args array, which was then used to find its value
in the environment via the process.env object.

At this point you can now access the value of any environment variable on your system.
To verify this, try viewing the following variables: PWD, USER, PATH.

Retrieving single variables is good, but letting the user specify how many variables they
want would be better.

25

Step 7 — Viewing Multiple Environment Variables

Currently, the application can only inspect one environment variable at a time. It would
be useful if we could accept multiple command line arguments and get their
corresponding value in the environment. Use nano to edit echo.js:

 nano echo.js

Copy
Edit the file so that it has the following code instead:

echo.js

const args = process.argv.slice(2);

args.forEach(arg => {

 console.log(process.env[arg]);

});
Copy
The forEach method is a standard JavaScript method on all array objects. It accepts
a callback function that is used as it iterates over every element of the array. You
use forEach on the args array, providing it a callback function that prints the current
argument‘s value in the environment.

Save and exit the file. Now re-run the program with two arguments:

 node echo.js HOME PWD

Copy
You would see the following output:

Output

 /home/sammy

/home/sammy/first-program
The forEach function ensures that every command line argument in the args array is
printed.

Now you have a way to retrieve the variables the user asks for, but we still need to
handle the case where the user enters bad data.

Step 8 — Handling Undefined Input

To see what happens if you give the program an argument that is not a valid
environment variable, run the following:

https://www.digitalocean.com/community/tutorials/how-to-use-array-methods-in-javascript-iteration-methods#foreach()

26

 node echo.js HOME PWD NOT_DEFINED

Copy
The output will look similar to the following:

Output

 /home/sammy

/home/sammy/first-program

undefined
The first two lines print as expected, and the last line only has undefined. In JavaScript,
an undefined value means that a variable or property has not been assigned a value.
Because NOT_DEFINED is not a valid environment variable, it is shown as undefined.

It would be more helpful to a user to see an error message if their command line
argument was not found in the environment.

Open echo.js for editing:

 nano echo.js

Copy
Edit echo.js so that it has the following code:

echo.js

const args = process.argv.slice(2);

args.forEach(arg => {

 let envVar = process.env[arg];

 if (envVar === undefined) {

 console.error(`Could not find "${arg}" in environment`);

 } else {

 console.log(envVar);

 }

});
Copy
Here, you have modified the callback function provided to forEach to do the following
things:

1. Get the command line argument‘s value in the environment and store it in a
variable envVar.

2. Check if the value of envVar is undefined.

27

3. If the envVar is undefined, then we print a helpful message indicating that it could not be
found.

4. If an environment variable was found, we print its value.

Note: The console.error function prints a message to the screen via the stderr stream,
whereas console.log prints to the screen via the stdout stream. When you run this
program via the command line, you won‘t notice the difference between
the stdout and stderr streams, but it is good practice to print errors via the stderr stream
so that they can be easier identified and processed by other programs, which can tell
the difference.

Now run the following command once more:

 node echo.js HOME PWD NOT_DEFINED

Copy
This time the output will be:

Output

 /home/sammy

/home/sammy/first-program

Could not find "NOT_DEFINED" in environment
Now when you provide a command line argument that‘s not an environment variable,
you get a clear error message stating so.

Conclusion

Your first program displayed ―Hello World‖ to the screen, and now you have written a
Node.js command line utility that reads user arguments to display environment
variables.

If you want to take this further, you can change the behavior of this program even more.
For example, you may want to validate the command line arguments before you print. If
an argument is undefined, you can return an error, and the user will only get output if all
arguments are valid environment variables.

Introduction to the Digital Computer

A Digital computer can be considered as a digital system that performs various
computational tasks.

28

The first electronic digital computer was developed in the late 1940s and was used
primarily for numerical computations.

By convention, the digital computers use the binary number system, which has two
digits: 0 and 1. A binary digit is called a bit.

A computer system is subdivided into two functional entities: Hardware and Software.

The hardware consists of all the electronic components and electromechanical devices
that comprise the physical entity of the device.

The software of the computer consists of the instructions and data that the computer
manipulates to perform various data-processing tasks.

29

o The Central Processing Unit (CPU) contains an arithmetic and logic unit for

manipulating data, a number of registers for storing data, and a control circuit for

fetching and executing instructions.

o The memory unit of a digital computer contains storage for instructions and data.

o The Random Access Memory (RAM) for real-time processing of the data.

o The Input-Output devices for generating inputs from the user and displaying the

final results to the user.

o The Input-Output devices connected to the computer include the keyboard,

mouse, terminals, magnetic disk drives, and other communication devices.

Concept of an algorithm

Although nowadays algorithms are primarily associated with software and computers,

their origins lie much further in the past. They have been used intuitively for centuries,

for example in the form of regulatory systems, instructions, rules for games,

architectural plans and musical scores.

Even some illustrated art books in the Renaissance period, for example Albrecht

Dürer‘s ―Four Books on Measurement‖ in 1525, were in fact structured instructions for

producing paintings, sculptures and buildings. In the history of music, too, from Bach

and Mozart to Schönberg and Schillinger, we see mathematical methods and even

small mechanical devices being used to make the process of musical composition

easier.

Step by step instructions

But what exactly is meant by the term algorithm? Over time, the following descriptions

have emerged as definitions: ―An algorithm is a procedure for decision-making or an

instruction on how to act which consists of a finite number of rules‖ or ―… a limited

sequence of unambiguous elementary instructions which exactly and completely

describe the way to solve a specific problem.‖ This applies regardless of whether it

relates to mathematics, fine art or music.

30

However, the most well-known application of algorithms is undoubtedly their use in

computer programming. A program is an algorithm that is formulated in a language that

allows it to be processed by a computer. Every computer program – a more advanced

machine language – is therefore an algorithm. In this way, people pass the work of

processing the procedures required in production or decision-making – often

calculations requiring days or hours – to a machine.

Programming becomes ever more precise

The first algorithm designed for a mechanical computing machine – to calculate

probabilities using Bernoulli numbers – was written in 1842-1843 by the British

mathematician Ada Lovelace in her notes about the work of Charles Babbage‘s

―Analytical Engine‖, designed in 1833.

31

However, because the English inventor, mathematician and philosopher never

managed to complete his mechanical computing machine for general applications in his

lifetime, the algorithm for it was also never implemented.

―The Babbage machine was never built because it was too unwieldy and complicated,

even though the software for it was formulated,‖ reports Dr Manuel Bachmann, a

researcher at the University of Basel and lecturer at the University of Lucerne, in his

book ―The triumph of the algorithm – how the idea of software was invented‖.

Nevertheless, other computing machines did see the light of day and, in parallel, more

and more precise programming became necessary.

The most complex things can be calculated

In recent decades, algorithms have become a key aspect of information science and the

theory of complexity and computability, in particular. Any problem that can be

programmed can be resolved by an algorithm. Even the most complex things can be

calculated using ones and zeros.

That includes the ―Dream of Pythagoras‖ – the ability to explain the world in the

relationships between whole numbers, and the vision of Gottfried Wilhelm Leibniz that

all rational truths are based on a kind of calculus. This is all reflected in a digital

philosophy and a view of the world based on algorithms which found its most recent

formulation in a book called ―A New Kind of Science‖, written in 2002 by the British

physicist and mathematician, Stephen Wolfram.

Using numerous visual examples, he describes the power of cellular automata to

explain nature, compared with more traditional mathematical models. His views are

highly controversial in the scientific community – as has so often been the case in the

history of the algorithm.

*DÜRER (21 May 1471 – 6 April 1528) was a painter, printmaker, and theorist of the

German Renaissance. Born in Nuremberg, Dürer established his reputation and

influence across Europe when he was still in his twenties due to his high-quality

woodcut prints.

termination and correctness

In theoretical computer science, correctness of an algorithm is asserted when it is said
that the algorithm is correct with respect to a specification. Functional correctness refers
to the input-output behavior of the algorithm (i.e., for each input it produces the
expected output).[1]

https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Program_specification
https://en.wikipedia.org/wiki/Correctness_(computer_science)#cite_note-functional-1

32

A distinction is made between partial correctness, which requires that if an answer is
returned it will be correct, and total correctness, which additionally requires that the
algorithm terminates. Since there is no general solution to the halting problem, total
correctness is not decidable. A termination proof is a type of mathematical proof that
plays a critical role in formal verification because total correctness of an algorithm
depends on termination.[2]

For example, successively searching through integers 1, 2, 3, … to see if we can find an
example of some phenomenon—say an odd perfect number—it is quite easy to write a
partially correct program (using factorization to calculate each integer's aliquot sum).
But to say this program is totally correct would be to assert something currently not
known in number theory.

A proof would have to be a mathematical proof, assuming both the algorithm and
specification are given formally. In particular it is not expected to be a correctness
assertion for a given program implementing the algorithm on a given machine. That
would involve such considerations as limitations on computer memory.

A deep result in proof theory, the Curry–Howard correspondence, states that a proof of
functional correctness in constructive logic corresponds to a certain program in
the lambda calculus. Converting a proof in this way is called program extraction.

Hoare logic is a specific formal system for reasoning rigorously about the correctness of
computer programs.[3] It uses axiomatic techniques to define programming language
semantics and argue about the correctness of programs through assertions known as
Hoare triples.

Software testing is any activity aimed at evaluating an attribute or capability of a
program or system and determining that it meets its required results. Although crucial to
software quality and widely deployed by programmers and testers, software testing still
remains an art, due to limited understanding of the principles of software. The difficulty
in software testing stems from the complexity of software: we can not completely test a
program with moderate complexity. Testing is more than just debugging. The purpose of
testing can be quality assurance, verification and validation, or reliability estimation.
Testing can be used as a generic metric as well. Correctness testing and reliability
testing are two major areas of testing. Software testing is a trade-off between budget,
time and quality.

Algorithms to programs:-

Specification

The concept of an algorithm is fundamental to computer science. Algorithms exist
for many common problems. and designing efficient algorithms plays a crucial role
in developing large-scale computer systems. Therefore. before we proceed further. we
discuss this concept more fully. We begin with a definition.

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Recursive_set
https://en.wikipedia.org/wiki/Termination_proof
https://en.wikipedia.org/wiki/Mathematical_proof
https://en.wikipedia.org/wiki/Formal_verification
https://en.wikipedia.org/wiki/Correctness_(computer_science)#cite_note-totalcorrectness-2
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Perfect_number
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Aliquot_sum
https://en.wikipedia.org/wiki/Perfect_number#Odd_perfect_numbers
https://en.wikipedia.org/wiki/Perfect_number#Odd_perfect_numbers
https://en.wikipedia.org/wiki/Number_theory
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Deep_result
https://en.wikipedia.org/wiki/Proof_theory
https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://en.wikipedia.org/wiki/Constructive_logic
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Hoare_logic
https://en.wikipedia.org/wiki/Formal_system
https://en.wikipedia.org/wiki/Correctness_(computer_science)#cite_note-hoare-3
https://en.wikipedia.org/wiki/Software_testing

33

Definition:

An algorithm is a finite set of instructions that. if followed. accomplishes a particular
task. In addition. all algorithms must satisfy the following criteria:

(1) Input. Zero or more quantities are externally supplied.

(2) Output, At least one quantity is produced.

(3) Definiteness. Each instruction is clear and unambiguous

.(4) Finiteness. If we trace out the instructions of an algorithm, then for all cases,
the algorithm terminates after a finite number of steps.

(5) Effectiveness. Every instruction must be basic enough to be carried out, in
principle, by a person using only pencil and paper. It is not enough that each
operation be definite as in (3); it also must be feasible.

In computational theory, one distinguishes between an algorithm and a program,
the latter of which does not have to satisfy the fourth condition. For example, we can
think of an operating system that continues in a wait loop until more jobs are entered.
Such a program does not terminate unless the system crashes. Since our programs will
always terminate, we will use the terms algorithm and program interchangeably in this
text.

We can describe an algorithm in many ways. We can use a natural language
like English, although if we select this option, ‗we must make sure that the resulting
instructions are definite. Graphic representations called flowcharts are another
possibility, but they work well only if the algorithm is small and simple. In this text, we
will present most of our algorithms in C++, occasionally resorting to a combination elf
English and C++ for our specifications. Two examples should help to illustrate the
process of translating a problem into an algorithm.

Example 1.2 [Selection sort]: Suppose we must devise a program that sorts a
collection of > integers. A simple solution is given by the following:
From those integers that are currently unsorted. find the smallest and place it next in the
sorted list.

Although this statement adequately describes the sorting problem, it is not an
algorithm in because it leaves several unanswered questions. For example, it does not
tell us where and how the integers are initially stored or where we should place the
result. We assume that tile integers are stored in an array, a, such that the ith integer is
stored in a [i -1], 1< i < n. Program 1.5 is our first attempt at deriving a solution. Notice
that it is written partially in C++ and partially in English.

https://www.chelponline.com/trees-12183
https://www.chelponline.com/sorting-11998

34

To turn Program 1.5 into a real C++ program, two clearly defined subtasks
remain: finding the smallest integer and interchanging it with a [i]. We can solve the
latter,problem by using the code:

temp = a[i]; a[i] = a [j]; a[j] = temp;

The first subtask can be solved by assuming the minimum is a [i], checking a [i] with [i +
1], a [i + 2], … and whenever a smaller element is found, regarding it as the new.

https://www.chelponline.com/wp-content/uploads/2015/11/Capture33.jpg
https://www.chelponline.com/wp-content/uploads/2015/11/sa.jpg
https://www.chelponline.com/wp-content/uploads/2015/11/Capture33.jpg
https://www.chelponline.com/wp-content/uploads/2015/11/sa.jpg

35

If x has not. been found and there are still integers to check, we recalculate middle
and continue the search. The algorithm contains two subtasks: (1) determining if there
are any integers left to check and (2) comparing x to a[middle].

At this point you might try the method out on some sample numbers. This method is
referred to as binary search. Note h~w at each stage the number of elements in
the remaining set ‗is decreased by about one-half. Note also that at each stage, x is
compared with a [middle] and depending on whether x > a [middle], x < a [middle], or x
== a [middle]; we do a different thing. To implement this in c++ we could use the if-
else construct:

if (x > a [middle]) …
else if (x < a [middle])
else …

From this construct it is not readily apparent that we are considering the three cases
that can result from the comparison between x and a [i]. To make the program more
transparent, we introduce a compare function that has value >, <, or =, depending on
the outcome of the comparison. This function is given in Program 1.7.

Program 1.7

We can now refine the description of binary search to get a pseudo-Cs+ function.
The result is given in Program 1.8.

https://www.chelponline.com/wp-content/uploads/2015/11/Capture37.jpg
https://www.chelponline.com/wp-content/uploads/2015/11/Capture38.jpg
https://www.chelponline.com/wp-content/uploads/2015/11/Capture37.jpg
https://www.chelponline.com/wp-content/uploads/2015/11/Capture38.jpg

36

Program 1.8

Another refinement yields the C++ function of Program 1.9.

Program 1.9

To prove this program correct we make assertions about the relationship between
variables before and after-the Cor loop of lines 4-11. As we enter this loop and if x is
present in a, the following holds:

left < right && a[left] < x < a[right] && SORTED (a, n)

Now, if control passes out of the for loop past line II, then we know the condition of line
4 is false, so left> right. This, combined with the above assertion, implies that x is not
present.

Unfortunately, a complete proof takes us beyond the scope of this text. but those who
wish to pursue program-proving should consult the references at the end of this chapter,

Recursive Algorithms

We have emphasized the need to structure a program to make it easier to achieve
the goals of readability and correctness. One of the most useful syntactical features for
accomplishing this is the function. A set of instructions that perform a logical
operation, perhaps a very complex and long operation, can be grouped together as a
function. The function name and its parameters are viewed as a new instruction that can
be used in other programs. Given the input-output specifications of a function, we do not
even have to know how the task is accomplished, only that it is available. This view of
the function implies that it is invoked, executed and returns control to the appropriate
place in the calling function. What this fails to stress is that functions may call
themselves (direct recursion) before they are done or they may call other functions that
again invoke the calling function (indirect recursion). These recursive mechanisms are
extremely powerful, but even more importantly, often they can express an otherwise
complex process very clearly. For these reasons we introduce recursion here.

Recursion is similar to the method of induction which is often used to
prove mathematical statements. In mathematical induction, a statement about integers
(e.g., the sum of the first n positive integers is n (n +1)12) is proved by showing that the
statement can be proved for integer k if it is assumed to be true for integer k -1.

https://www.chelponline.com/wp-content/uploads/2015/11/Capture39.jpg

37

Similarly, in recursion, we write a function to produce an output (say n!) for some input
(here, n) by assuming that the same function will compute the correct output for input n
– I. In mathematical induction, we need a basis which can be directly proved (that is, the
proof for the basis does not make any assumptions). Similarly, a recursive function
requires a terminating condition. When the input to the function satisfies this terminating
condition, the function directly computes the output without calling itself.

What kinds of problems are best solved by recursion? Typically, beginning
programmers view recursion as a somewhat mystical technique that is useful only for
some very special class of problems (such as computing factorials or Ackermann‘s
function). This is unfortunate because any program that can be written using
assignment, the if-else statement, and the while statement can also be written using
assignment, if-else, and recursion. Of course, this does not mean that the resulting
program will necessarily be easier to understand. However, there are many instances
when this will be the case. When is recursion an appropriate mechanism for algorithm
exposition? One instance is when the problem itself is recursively defined. Factorial fits
this category, as well as binomial coefficients where

We use two examples to show you how to develop a recursive algorithm. In the first
example, we take the binary search function that we created in Example 1.3
and transform it into a recursive function. In the second example, we generate all
possible permutations of a list of characters. To understand a recursive function, you
must.

(1) Formulate in your mind a statement of what it is that the function is supposed to do,
for a given input.

(2) Verify that the function does achieve its goal if the recursive invocations to itself do
what they are supposed to.

(3) Ensure that a finite number of recursive invocations of the function eventually lead to
an invocation which satisfies the terminating condition (otherwise, the function will keep
calling itself and not terminate!).·

(4) The function should perform the correct computations if the terminating condition is
encountered. .

Example 1.4 [Recursive binary search]: Program 1.9 gave the iterative version of binary
search. In the recursive version· We pass left and right as parameters (Program 1.10).

https://www.chelponline.com/wp-content/uploads/2015/11/Capture40.jpg

38

The for loop of Program. 1.9 has been replaced by recursive calls in Program 1.10. To
invoke the recursive function, we use the statement

BinarySearch (a, x, 0, n -1);

You should verify that Binary‘Search satisfies the four conditions stated above for
recursive function‘s. Notice that both the iterative (Program 1.9) and recursive (Program
1.10) functions perform the same computation.

Example 1.5 [Permutation generator]:· Given a set of n > 1 elements, the problem is
to print all possible permutations of this set. For example if the set is {a, b, c}, then the
set of permutations is {(a, b, c), (a, c, b),(b, a, c),(b, c, a),(c, a, b),(c, b, a)}. It is easy to
see that given n elements, there are n ! different permutations. A simple algorithm
can be obtained by looking at the the case of four elements (a,b,c,d). The answer can
be constructed by writing.

Program 1.10

(I) a followed by all permutations of (b,c,d)

(2) b followed by all permutations of (a,c,d)

(3) c followed by all permutations of (a,b,d)

(4) d followed by all permutations of (a,b,c)

The expression ―followed by all permutations‖ is the clue to ‗recursion. It implies that we
can solve the problem for a set with n elements if we have an algorithm that works on n
– 1 elements. These observations lead to Program 1.11, which is invoked by perm (a, 0,
n).

Try this algorithm out on sets of length one, two, and three to ensure that
you understand how it works.

Another time when recursion is useful is when the data structure that the algorithm is to
operate on is recursively defined. We shall see several important examples of
such structures in this book.

https://www.chelponline.com/wp-content/uploads/2015/11/Capture42.jpg

39

Program 1.11

2. Given n Boolean variables x!….., Xn we wish to print all possible combinations ‗. of
truth values they can assume. For instance, if n=2, there are four possibilities: true, true;
true, false; false, true; false, false. Write a C++ program to accomplish this and do a
frequency count.

3. Write a C++ program that prints out the integer values of x. y. and z in
nondecreasing order. What is the computing time of your method?

4.. Write a C++ function that searches an array a [n] for the element x. If x occurs, then
set j to its position in the array. else set j to -I. Try writing this without using the goto
statement.

5. Trace the action of the code

https://www.chelponline.com/wp-content/uploads/2015/11/Capture43.jpg
https://www.chelponline.com/wp-content/uploads/2015/11/Capture44.jpg
https://www.chelponline.com/wp-content/uploads/2015/11/Capture45.jpg
https://www.chelponline.com/wp-content/uploads/2015/11/Capture43.jpg
https://www.chelponline.com/wp-content/uploads/2015/11/Capture44.jpg
https://www.chelponline.com/wp-content/uploads/2015/11/Capture45.jpg
https://www.chelponline.com/wp-content/uploads/2015/11/Capture43.jpg
https://www.chelponline.com/wp-content/uploads/2015/11/Capture44.jpg
https://www.chelponline.com/wp-content/uploads/2015/11/Capture45.jpg

40

on the elements 2..4,6,8. 10. 12. 14. 16. 18, and 20 searching for x= 1.3, 13. or 21.

6. Take any version of binary search, express it using assignment, if-else, and goto, and
then give an equivalent recursive program. .

7. The factorial function n! has value I when n ~ 1 and value n*(n-l)! when n > I. Write
both a recursive and an iterative C++ function to compute n l.

8. Write an iterative function to compute a binomial coefficient; then transform it into an
equivalent recursive function.

9. Ackermann‘s function A (m,n) is defined as follows:

10. The pigeonhole principle states that if a function f has n distinct inputs but less than
n distinct outputs, then there exist two inputs a and b such that a :1: band f(a) = f(b).
Write a program to find the values a and b for which the range values are equal.
Assume that the inputs are I, 2, … , n.

11. Given n, a positive integer, determine if n is the sum of all of its divisors i.e., if is the
sum of all t such that 1 < t < n, and t divides n.

12. Consider the function F (x) defined by
if (x is even) F = x /2;
else F = F(F(3x + 1))
Prove that F(x) terminates for all integers x. (Hint: Consider integers of the form (2i + I
)2k – I and use induction.)

13. If S is a set Of n elements, the powerset of S is the set of all possible subsets of
S. For example, if S = (a,b,c), then powerset (S) = ((), (a), (b), (c), (a,b), (a,c), b,c),
(a,b,c)}. Write a recursive function to compute powerset (S).

14. [Towers of Hanoi) There are three towers and sixty-four disks of different
diameters placed on the first tower. The disks are in order of decreasing diameter as
one scans up the tower. Monks were supposed to move the disks from tower I to tower
3 obeying the following rules: (a) only one disk can be moved at any time and (b) no
disk can be placed on top of a disk with smaller diameter. Write a recursive function that
prints the sequence of moves that accomplish this task.

top-down development and stepwise refinement

Near the beginning of learning Java, you will hear something about top-down design,
stepwise refinement and decomposition. This post today will explain what those terms

https://www.chelponline.com/wp-content/uploads/2015/11/Capture46.jpg

41

mean as well as provide the reason why you need to tackle programming design with
this approach in mind.

Just for the sake of clarity, top-down design is the process of stepwise design and
decomposition.

Before you start writing any code for a new program you want to create, you first need
to design the program or at least have a specification so that you know exactly what you
need to create.

The top-down design approach to programming

Now that you know what you need to accomplish with your program, you now need to
know how you can accomplish it. The approach used to do that is called top-down
design and this simply means putting all the important main parts of the program in to a
list.

An example I want to use is from a Karel world. In this example, Karel needs to collect
the beeper (which is called a newspaper in the assignment). The assignment states that
Karel‘s world doesn‘t change and that the door is always where it is and the paper is
always on point 6,3 and that when collected, Karel needs to return back to the start.

42

A top-down design approach could go something like this:

1. Walk to paper.

2. Pick it up.

3. Return back to start.

This is our top level that describes what needs to be done in the most basic form. I
guess we could start at an even higher level and simply say ―Collect paper‖, but
programming problems can be tackled in many ways and the way above is simply the
way I have decided to do it.

Stepwise Refinement/Decomposition

The next process is what is called stepwise refinement or decomposition. Rather than
leaving step 1 as ―walk to paper‖, we need to be more clear than this. So, to break this
step down with stepwise refinement, we could say…

1. Walk to paper.

1a. Walk to wall

1b. turn right

1c. move

1d. turn left

As this program is relatively simple, I think it can be left at just the one breakdown.
However, more complicated programs will require that steps 1a, 1b, 1c, 1d and 1e are
decomposed several times.

For step 2 ―pick it up‖, the assignment says we can assume there will always be a paper
there. To be on the safe side, we might want to have a bit more detail here and put
checks in place such as using an if statement to check if a paper is present. Also, we
could look here at pre-conditions and post-conditions. We need to know where Karel will
be after step 1 and where he needs to be to start step 3. In the breakdown of ―walk to
paper‖ I decided to leave Karel at the inside of the door facing out… so a pre-condition
is that Karel needs to make 1 move to the paper. A post-condition I will set is for Karel is
that he has returned to inside the house facing west which means we need to
remember that as a pre-condition for step 3… returning to the start.

https://www.devfright.com/what-are-pre-conditions-and-post-conditions-in-programming/

43

Breaking down part 2:

2. Pick it up

2a. Move to paper

2b. Check if paper available

2c. pick up paper

2d. turn around

2e. move (leave facing west)

Now we know that Karel is in the house, facing west we can break down step 3 as
follows:

3. Return back to the start

3a. move to wall

3b. turn right

3c. move to wall

I decided to tackle point 3 a different way. Instead of sending Karel back to the couch
the same way he came in… along the top and right wall. I decided to make him simply
continue west till he hits the wall, then turn right and then move to the top wall.

Conclusion

When you are writing programs, remember to use an approach that helps. Top-down
design is one way of doing this. It breaks the program in to bite-sized chunks and allows
you to solve each problem one at a time, in any order. Remember that you need to
make a note of pre and post conditions so that when you write the program out of
sequence, or as part of a team, all people know that Karel is facing west at a certain
point and can safely assume they just need to move him to a wall.

Also notice that 1a, 3a and 3c could technically use the same method… perhaps called
―walkToWall()‖. As long as pre and post conditions are taken in to account, Karel is
doing the same thing for each of those steps which means you have solved the problem
in a more simple way.

The first assignment in Karel is relatively simple and top-down design with stepwise
refinement and decomposition still finds a use here. In larger projects that you may end
up working on as part of a team, a systematic approach is needed so that you can get

44

through a project more easily. Make sure your notes are up to speed and that you keep
practicing and not forgetting comments or top-down design when creating your first and
all other programs.

Introduction to Programming

Are you aiming to become a software engineer one day? Do you also want to develop a
mobile application that people all over the world would love to use? Are you passionate
enough to take the big step to enter the world of programming? Then you are in the right
place because through this article you will get a brief introduction to programming. Now
before we understand what programming is, you must know what is a computer. A
computer is a device that can accept human instruction, processes it and responds to it or
a computer is a computational device which is used to process the data under the control
of a computer program. Program is a sequence of instruction along with data.
The basic components of a computer are:

1. Input unit

2. Central Processing Unit(CPU)

3. Output unit

The CPU is further divided into three parts-

Most of us have heard that CPU is called the brain of our computer because it accepts
data, provides temporary memory space to it until it is stored(saved) on the hard disk,
performs logical operations on it and hence processes(here also means converts) data
into information. We all know that a computer consists of hardware and software.
Software is a set of programs that performs multiple tasks together. An operating system
is also a software (system software) that helps humans to interact with the computer
system.

A program is a set of instructions given to a computer to perform a specific operation. or
computer is a computational device which is used to process the data under the control of
a computer program. While executing the program, raw data is processed into a desired
output format. These computer programs are written in a programming language which
are high level languages. High level languages are nearly human languages which are
more complex then the computer understandable language which are called machine
language, or low level language. So after knowing the basics, we are ready to create a
very simple and basic program. Like we have different languages to communicate with

45

each other, likewise, we have different languages like C, C++, C#, Java, python, etc to
communicate with the computers. The computer only understands binary language (the
language of 0‘s and 1‘s) also called machine-understandable language or low-level
language but the programs we are going to write are in a high-level language which is
almost similar to human language.

The piece of code given below performs a basic task of printing ―hello world! I am learning
programming‖ on the console screen. We must know that keyboard, scanner, mouse,
microphone, etc are various examples of input devices and monitor(console screen),
printer, speaker, etc are the examples of output devices.

main()

 {

 clrscr();

 printf(―hello world! I am learning to program);

 getch();

 }

At this stage, you might not be able to understand in-depth how this code prints
something on the screen. The main() is a standard function that you will always include in
any program that you are going to create from now onwards. Note that the execution of
the program starts from the main() function. The clrscr() function is used to see only the
current output on the screen while the printf () function helps us to print the desired output
on the screen. Also, getch() is a function that accepts any character input from the
keyboard. In simple words, we need to press any key to continue(some people may say
that getch() helps in holding the screen to see the output).

Between high-level language and machine language there are assembly language also
called symbolic machine code. Assembly language are particularly computer architecture
specific. Utility program (Assembler) is used to convert assembly code into executable
machine code. High Level Programming Language are portable but require Interpretation
or compiling toconvert it into a machine language which is computer understood.

46

Hierarchy of Computer language –

There have been many programming language some of them are listed below:

C Python C++

C# R Ruby

COBOL ADA Java

Fortran BASIC Altair BASIC

True BASIC Visual BASIC GW BASIC

QBASIC PureBASIC PASCAL

Turbo Pascal GO ALGOL

LISP SCALA Swift

Rust Prolog Reia

47

Racket Scheme Shimula

Perl PHP Java Script

CoffeeScript VisualFoxPro Babel

Logo Lua Smalltalk

Matlab F F#

Dart Datalog dbase

Haskell dylan Julia

ksh metro Mumps

Nim OCaml pick

TCL D CPL

Curry ActionScript Erlang

Clojure DarkBASCIC Assembly

Most Popular Programming Languages –

 C
 Python
 C++
 Java
 SCALA
 C#
 R
 Ruby
 Go
 Swift
 JavaScript

48

Characteristics of a programming Language –

 A programming language must be simple, easy to learn and use, have good

readability and human recognizable.

 Abstraction is a must-have Characteristics for a programming language in which
ability to define the complex structure and then its degree of usability comes.

 A portable programming language is always preferred.

 Programming language‘s efficiency must be high so that it can be easily converted
into a machine code and executed consumes little space in memory.

 A programming language should be well structured and documented so that it is
suitable for application development.

 Necessary tools for development, debugging, testing, maintenance of a program
must be provided by a programming language.

 A programming language should provide single environment known as Integrated
Development Environment(IDE).

 A programming language must be consistent in terms of syntax and semantics.

Use of high level programming language for the systematic development of
programs

How do you think we communicate with a computer? A computer cannot understand any
commands that you may give in English or in any other language. It has its own set of
instructions for communication, or what we call computer languages. This is an important
part of your syllabus for banking exams. Let us take a look.

Computer Languages

The user of a computer must be able to communicate with it. That means, he must be able
to give the computer commands and understand the output that the computer generates.
This is possible due to the invention of computer languages.

Basically, there are two main categories of computer languages, namely Low Level
Language and High Level Language. Let us take a brief look at both these types of
computer languages.

49

1] Low Level Languages

Low level languages are the basic computer instructions or better known as machine
codes. A computer cannot understand any instruction given to it by the user in English or
any other high level language. These low level languages are very easily understandable
by the machine.

The main function of low level languages is to interact with the hardware of the computer.
They help in operating, syncing and managing all the hardware and system components
of the computer. They handle all the instructions which form the architecture of the
hardware systems.

Browse more Topics under Basics Of Computers

 Number Systems

 Number System Conversions

 Generations of Computers

 Computer Organisation

 Computer Memory

 History of Computers

 Computers Abbreviations

 Basic Computer Terminology

 Basic Internet Knowledge and Protocols

 Hardware and Software

 Keyboard Shortcuts

 I/O Devices

 Practice Problems On Basics Of Computers

Machine Language

This is one of the most basic low level languages. The language was first developed to
interact with the first generation computers. It is written in binary code or machine code,
which means it basically comprises of only two digits – 1 and 0.

https://www.toppr.com/guides/computer-aptitude-and-knowledge/basics-of-computers/number-systems/
https://www.toppr.com/guides/computer-aptitude-and-knowledge/basics-of-computers/number-system-conversions/
https://www.toppr.com/guides/computer-aptitude-and-knowledge/basics-of-computers/generations-of-computers/
https://www.toppr.com/guides/computer-aptitude-and-knowledge/basics-of-computers/computer-organization/
https://www.toppr.com/guides/computer-aptitude-and-knowledge/basics-of-computers/computer-memory/
https://www.toppr.com/guides/computer-aptitude-and-knowledge/basics-of-computers/history-of-computers/
https://www.toppr.com/guides/computer-aptitude-and-knowledge/basics-of-computers/computer-abbreviations/
https://www.toppr.com/guides/computer-aptitude-and-knowledge/basics-of-computers/basic-computer-terminology/
https://www.toppr.com/guides/computer-aptitude-and-knowledge/basics-of-computers/basic-internet-knowledge-and-protocols/
https://www.toppr.com/guides/computer-aptitude-and-knowledge/basics-of-computers/hardware-and-software/
https://www.toppr.com/guides/computer-aptitude-and-knowledge/basics/keyboard-shortcuts/
https://www.toppr.com/guides/computer-aptitude-and-knowledge/basics-of-computers/input-and-output-devices/
https://www.toppr.com/guides/computer-aptitude-and-knowledge/basics-of-computers/basic-computer-knowledge-practice-problems/

50

Assembly Language

This is the second generation programming language. It is a development on the machine
language, where instead of using only numbers, we use English words, names, and
symbols. It is the most basic computer language necessary for any processor.

2] High Level Language

When we talk about high level languages, these are programming languages. Some
prominent examples are PASCAL, FORTRAN, C++ etc.

The important feature about such high level languages is that they allow the programmer
to write programs for all types of computers and systems. Every instruction in high level
language is converted to machine language for the computer to comprehend.

Scripting Languages

Scripting languages or scripts are essentially programming languages. These languages
employ a high level construct which allows it to interpret and execute one command at a
time.

Scripting languages are easier to learn and execute than compiled languages. Some
examples are AppleScript, JavaScript, Pearl etc.

Object-Oriented Languages

These are high level languages that focus on the ‗objects‘ rather than the ‗actions‘. To
accomplish this, the focus will be on data than logic.

The reasoning behind is that the programmers really cares about the object they wish to
manipulate rather than the logic needed to manipulate them. Some examples include
Java, C+, C++, Python, Swift etc.

Procedural Programming Language

This is a type of programming language that has well structured steps and complex
procedures within its programming to compose a complete program.

It has a systematic order functions and commands to complete a task or a program.
FORTRAN, ALGOL, BASIC, COBOL are some examples.

51

Introduction to the design and implementation of correct

Software Design is the process to transform the user requirements into some suitable
form, which helps the programmer in software coding and implementation. During the
software design phase, the design document is produced, based on the customer
requirements as documented in the SRS document. Hence the aim of this phase is to
transform the SRS document into the design document.
The following items are designed and documented during the design phase:

 Different modules required.
 Control relationships among modules.
 Interface among different modules.
 Data structure among the different modules.
 Algorithms required to implement among the individual modules.

Objectives of Software Design:

1. Correctness:

A good design should be correct i.e. it should correctly implement all the
functionalities of the system.

2. Efficiency:

A good software design should address the resources, time and cost optimization
issues.

3. Understandability:

A good design should be easily understandable, for which it should be modular
and all the modules are arranged in layers.

4. Completeness:

The design should have all the components like data structures, modules, and
external interfaces, etc.

5. Maintainability:

A good software design should be easily amenable to change whenever a change
request is made from the customer side.

Software Design Concepts:

Concepts are defined as a principal idea or invention that comes in our mind or in thought
to understand something. The software design concept simply means the idea or

https://www.geeksforgeeks.org/software-engineering-software-design-process/

52

principle behind the design. It describes how you plan to solve the problem of designing
software, the logic, or thinking behind how you will design software. It allows the software
engineer to create the model of the system or software or product that is to be developed
or built. The software design concept provides a supporting and essential structure or
model for developing the right software. There are many concepts of software design and
some of them are given below:

53

Following points should be considered while designing a Software:

1. Abstraction- hide relevant data

Abstraction simply means to hide the details to reduce complexity and increases
efficiency or quality. Different levels of Abstraction are necessary and must be
applied at each stage of the design process so that any error that is present can be
removed to increase the efficiency of the software solution and to refine the
software solution. The solution should be described in broadways that cover a wide
range of different things at a higher level of abstraction and a more detailed
description of a solution of software should be given at the lower level of
abstraction.

2. Modularity- subdivide the system

Modularity simply means to divide the system or project into smaller parts to
reduce the complexity of the system or project. In the same way, modularity in
design means to subdivide a system into smaller parts so that these parts can be
created independently and then use these parts in different systems to perform
different functions. It is necessary to divide the software into components known as
modules because nowadays there are different software available like Monolithic
software that is hard to grasp for software engineers. So, modularity is design has
now become a trend and is also important.

3. Architecture- design a structure of something

Architecture simply means a technique to design a structure of something.
Architecture in designing software is a concept that focuses on various elements
and the data of the structure. These components interact with each other and use
the data of the structure in architecture.

4. Refinement- removes impurities

Refinement simply means to refine something to remove any impurities if present
and increase the quality. The refinement concept of software design is actually a
process of developing or presenting the software or system in a detailed manner
that means to elaborate a system or software. Refinement is very necessary to find
out any error if present and then to reduce it.

5. Pattern- a repeated form

The pattern simply means a repeated form or design in which the same shape is
repeated several times to form a pattern. The pattern in the design process means
the repetition of a solution to a common recurring problem within a certain context.

54

6. Information Hiding- hide the information

Information hiding simply means to hide the information so that it cannot be
accessed by an unwanted party. In software design, information hiding is achieved
by designing the modules in a manner that the information gathered or contained
in one module is hidden and it cant be accessed by any other modules.

7. Refactoring- reconstruct something

Refactoring simply means to reconstruct something in such a way that it does not
affect the behavior or any other features. Refactoring in software design means to
reconstruct the design to reduce and complexity and simplify it without affecting the
behavior or its functions. Fowler has defined refactoring as ―the process of
changing a software system in a way that it won‘t affect the behavior of the design
and improves the internal structure‖.

Different levels of Software Design:

There are three different levels of software design. They are:

1. Architectural Design:

The architecture of a system can be viewed as the overall structure of the system
& the way in which structure provides conceptual integrity of the system. The
architectural design identifies the software as a system with many components
interacting with each other. At this level, the designers get the idea of the proposed
solution domain.

2. Preliminary or high-level design:

Here the problem is decomposed into a set of modules, the control relationship
among various modules identified and also the interfaces among various modules
are identified. The outcome of this stage is called the program architecture. Design
representation techniques used in this stage are structure chart and UML.

3. Detailed design:

Once the high level design is complete, detailed design is undertaken. In detailed
design, each module is examined carefully to design the data structure and
algorithms. The stage outcome is documented in the form of a module
specification document.

55

efficient and maintainable programs

in this phase , the user‘s expectations are gathered to understand why the program or

software has to be developed. Then , all the gathered requirements are analysed and

the scope or objective of the over all software product is penned down. The last activity

in this phase involves documenting every identified requirement of the user in order to

avoid any doubts or uncertainty regarding the functionality of the program. The

functionality, capability, performance, and availability of hardware and software

components are all analysed in this phase.

Design:

The requirement documented in the previous phase act as the input to the design

phase. In this phase, a plan of actions is made before the actual development process

starts. This plan will be followed throughout the development process. Moreover, in the

design phase, the core structure of the software or program is broken down in to

modules. The solution of the program is then specified for each module in the form of

algorithms or flow charts . The design phase, therefore specifies how the program or

software will be developed.

Implementation:

In this phase, the designed algorithms are converted in to program code using any of

the high level languages. The particular choice of language will depend on the type of

program such as whether it is a system or an application program. C is preferred for

writing system programs, whereas Visual basic might be preferred for an application

program. The program codes are tested by the programmer to ensure their correctness.

Testing:

In this phase , all the modules are tested together to ensure that the overall system

works well as a whole product. In this phase, the software is tested using a large

number of varied inputs, also known as test data, to ensure that the software is working

as expected by the user‘s requirements identified in the requirements analysis phase.

56

Software deployment, training, and support:

After the code is tested and the software or the program is approved by the user‘s it is

then installed or deployed in the production environment.

Software training and support is a crucial phase. Program designers and developers

spend a lot of time creating the software, but if nobody in the organization knows how to

use it or to fix certain problems , then no one will want to use it.

Maintenance:

Maintenance and enhancements are ongoing activities that are done to cope with newly

discovered problems or new requirements. Such activities may take a long time to

complete.

Structured Programming

Since the invention by Von Neumann of the stored program computer, computer
scientists have known that a tremendous power of computing equipment was the ability
to alter its behavior, depending on the input data. Calculating machines had, for some
time, been able to perform fixed arithmetic operations on data, but the potential of
machines capable of making decisions opened up many new possibilities. Machines
that could make decisions were capable of sorting records, tabulating and summarizing
data, searching for information, and many more advanced operations that could not
even be imagined at the time.

In early programming languages, like Fortran (first invented in 1954) and various low
level machine languages, the goto statement allowed the computer to deviate from the
sequential execution of the program instructions. The goto statement was recognized to
be a very powerful construction, and soon, programs of increasing complexity and
power were developed.

However, the increasingly complex code that resulted from goto statements became
harder and harder to maintain. Dijkstra, in 1966, was one of the first persons to
recognize that this run away complexity of programs was due to the overuse of the goto
statement (Dijkstra, E. W., "Go To Considered Harmful," Communications of the ACM,
March 1966). In fact, it was determined shortly thereafter, that the goto statement is not
needed at all. Dijkstra showed that any program construction that could be created with
goto statements could be created more simply with the sequence, repetition and
decision constructions that are discussed in the following sections. This was the birth of
the discipline of Structured Programming.

57

Structured Programming in Everyday Life

1. Sequence Execute a list of statements in order.
Example: Baking Bread

Add flour.
Add salt.
Add yeast.
Mix.
Add water.
Knead.
Let rise.
Bake.

2. Repetition Repeat a block of statements while a condition is true.

Example: Washing Dishes

Stack dishes by sink.
Fill sink with hot soapy water.
While moreDishes
 Get dish from counter,
 Wash dish,
 Put dish in drain rack.
End While
Wipe off counter.
Rinse out sink.

3. Selection Choose at most one action from several alternative conditions.

Example: Sorting Mail

Get mail from mailbox.
Put mail on table.
While moreMailToSort
 Get piece of mail from table.
 If pieceIsPersonal Then
 Read it.
 ElseIf pieceIsMagazine Then
 Put in magazine rack.
 ElseIf pieceIsBill Then
 Pay it,

58

 ElseIf pieceIsJunkMail Then
 Throw in wastebasket.
 End If
End While

Structured Programming in Visual Basic

Structured programming is a program written with only the structured programming
constructions: (1) sequence, (2) repetition, and (3) selection.

1. Sequence. Lines or blocks of code are written and executed in sequential
order.

Example:

x = 5
y = 11
z = x + y
WriteLine(z)

2. Repetition. Repeat a block of code (Action) while a condition is true. There is
no limit to the number of times that the block can be executed.

While condition
 action
End While

Example:

x = 2
While x < 100
 WriteLine(x)
 x = x * x
End

3. Selection. Execute a block of code (Action) if a condition is true. The block of
code is executed at most once.

59

If condition Then
 action
End If

Example:

x = ReadLine()
If x Mod 2 = 0
 WriteLine("The number is even.")
End If

Extensions to Structured Programming

To make programs easier to read, some additional constructs were added to the basic
three original structured programming constructs:

1. Definite Repetition (For Loop) Combine initialization, checking a condition,
and incrementing a counter in a single statement called a for statement. Here is
the general form:

For i = 1 To n Step k ' Step k is optional
 action
Next

Example:

For i = 1 To 20
 WriteLine(i)
Next i

Example:

For i = 20 To 1 Step -1
 WriteLine(i)
Next

2. If-Then-Else Statements Execute the first action whose corresponding
condition is true. Here is the general form:

60

If condition1 Then
 action1
ElseIf condition2 Then
 action2
ElseIf condition3 Then
 action3
Else
 defaultAction
End If

Example:

If n = 1 Then
 WriteLine("One")
ElseIf n = 2 Then
 WriteLine("Two")
ElseIf n = 3 Then
 WriteLine("Three")
Else
 WriteLine("Many")
End If

3. Select Statement Execute the action corresponding to the value of the
expression.

Select Case value1
 Case value1
 action1
 Case value2
 action2
 Case value3
 action3
 Case Else
 defaultAction
End Select

Example:

Select Case n
 Case 1
 WriteLine("One")
 Case 2
 WriteLine("Two")
 Case 3

61

 WriteLine("Three")
 Case Else
 WriteLine("Many")
End Select

Trace an algorithm to depict the logic

A trace table is a technique used to test algorithms in order to make sure that no logical
errors occur while the calculations are being processed. The table usually takes the
form of a multi-column, multi-row table; With each column showing a variable, and each
row showing each number input into the algorithm and the subsequent values of the
variables.

Trace tables are typically used in schools and colleges when teaching students how to
program. They can be an essential tool in teaching students how certain calculations
works and the systematic process that is occurring when the algorithm is executed.
They can also be useful for debugging applications, helping the programmer to easily
detect what error is occurring, and why it may be occurring.

Example [edit]

int i, x = 0;
for (i = 1; i <= 10; i++)
{
 x = i * 2;
}

i x

? 0

1 2

2 4

3 6

https://en.wikipedia.org/wiki/Calculations
https://en.wikipedia.org/wiki/Variable_(programming)
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/w/index.php?title=Trace_table&action=edit§ion=1

62

4 8

5 10

6 12

7 14

8 16

9 18

10 20

11 20

This example shows the systematic process that takes place whilst the algorithm is
processed. The initial value of x is zero, but i, although defined, has not been assigned
a value. Thus, its initial value is unknown. As we execute the program, line by line, the
values of i and x change, reflecting each statement of the source code in execution.
Their new values are recorded in the trace table. When i reaches the value
of 11 because of the i++ statement in the for definition, the comparison i <=
10 evaluates to false, thus halting the loop. As we also reached the end of the program,
the trace table also ends.

Number Systems and conversion methods

There are many methods or techniques which can be used to convert numbers from
one base to another. We'll demonstrate here the following −

 Decimal to Other Base System

 Other Base System to Decimal

 Other Base System to Non-Decimal

 Shortcut method − Binary to Octal

63

 Shortcut method − Octal to Binary

 Shortcut method − Binary to Hexadecimal

 Shortcut method − Hexadecimal to Binary

Decimal to Other Base System

Steps

 Step 1 − Divide the decimal number to be converted by the value of the new
base.

 Step 2 − Get the remainder from Step 1 as the rightmost digit (least significant
digit) of new base number.

 Step 3 − Divide the quotient of the previous divide by the new base.

 Step 4 − Record the remainder from Step 3 as the next digit (to the left) of the
new base number.

Repeat Steps 3 and 4, getting remainders from right to left, until the quotient becomes
zero in Step 3.

The last remainder thus obtained will be the Most Significant Digit (MSD) of the new
base number.

Example −

Decimal Number: 2910

Calculating Binary Equivalent –

Step Operation Result Remainder

Step 1 29 / 2 14 1

Step 2 14 / 2 7 0

Step 3 7 / 2 3 1

Step 4 3 / 2 1 1

64

Step 5 1 / 2 0 1

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse
order so that the first remainder becomes the Least Significant Digit (LSD) and the last
remainder becomes the Most Significant Digit (MSD).

Decimal Number − 2910 = Binary Number − 111012.

Other Base System to Decimal System

Steps

 Step 1 − Determine the column (positional) value of each digit (this depends on
the position of the digit and the base of the number system).

 Step 2 − Multiply the obtained column values (in Step 1) by the digits in the
corresponding columns.

 Step 3 − Sum the products calculated in Step 2. The total is the equivalent value
in decimal.

Example

Binary Number − 111012

Calculating Decimal Equivalent –

Step Binary Number Decimal Number

Step
1

111012 ((1 × 24) + (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20))10

Step
2

111012 (16 + 8 + 4 + 0 + 1)10

Step
3

111012 2910

Binary Number − 111012 = Decimal Number − 2910

65

Other Base System to Non-Decimal System

Steps

 Step 1 − Convert the original number to a decimal number (base 10).

 Step 2 − Convert the decimal number so obtained to the new base number.

Example

Octal Number − 258

Calculating Binary Equivalent −

Step 1 − Convert to Decimal

Step Octal Number Decimal Number

Step 1 258 ((2 × 81) + (5 × 80))10

Step 2 258 (16 + 5)10

Step 3 258 2110

Octal Number − 258 = Decimal Number − 2110

Step 2 − Convert Decimal to Binary

Step Operation Result Remainder

Step 1 21 / 2 10 1

Step 2 10 / 2 5 0

Step 3 5 / 2 2 1

Step 4 2 / 2 1 0

66

Step 5 1 / 2 0 1

Decimal Number − 2110 = Binary Number − 101012

Octal Number − 258 = Binary Number − 101012

Shortcut method - Binary to Octal

Steps

 Step 1 − Divide the binary digits into groups of three (starting from the right).

 Step 2 − Convert each group of three binary digits to one octal digit.

Example

Binary Number − 101012

Calculating Octal Equivalent –

Step Binary Number Octal Number

Step
1

101012 010 101

Step
2

101012 28 58

Step
3

101012 258

Binary Number − 101012 = Octal Number − 258

Shortcut method - Octal to Binary

Steps

 Step 1 − Convert each octal digit to a 3 digit binary number (the octal digits may
be treated as decimal for this conversion).

 Step 2 − Combine all the resulting binary groups (of 3 digits each) into a single
binary number.

67

Example

Octal Number − 258

Calculating Binary Equivalent −

Step Octal Number Binary Number

Step
1

258 210 510

Step
2

258 0102 1012

Step
3

258 0101012

Octal Number − 258 = Binary Number − 101012

Shortcut method - Binary to Hexadecimal

Steps

 Step 1 − Divide the binary digits into groups of four (starting from the right).

 Step 2 − Convert each group of four binary digits to one hexadecimal symbol.

Example

Binary Number − 101012

Calculating hexadecimal Equivalent –

Step Binary Number Hexadecimal Number

Step
1

101012 0001 0101

Step 101012 110 510

68

2

Step
3

101012 1516

Binary Number − 101012 = Hexadecimal Number − 1516

Shortcut method - Hexadecimal to Binary

Steps

 Step 1 − Convert each hexadecimal digit to a 4 digit binary number (the
hexadecimal digits may be treated as decimal for this conversion).

 Step 2 − Combine all the resulting binary groups (of 4 digits each) into a single
binary number.

Example

Hexadecimal Number − 1516

Calculating Binary Equivalent –

Step Hexadecimal Number Binary Number

Step
1

1516 110 510

Step
2

1516 00012 01012

Step
3

1516 000101012

Hexadecimal Number − 1516 = Binary Number − 101012

69

UNIT II

Standard I/O in ―C‖

When we say Input, it means to feed some data into a program. An input can be given
in the form of a file or from the command line. C programming provides a set of built-in
functions to read the given input and feed it to the program as per requirement.

When we say Output, it means to display some data on screen, printer, or in any file. C
programming provides a set of built-in functions to output the data on the computer
screen as well as to save it in text or binary files.

The Standard Files

C programming treats all the devices as files. So devices such as the display are
addressed in the same way as files and the following three files are automatically
opened when a program executes to provide access to the keyboard and screen.

Standard File File Pointer Device

Standard input stdin Keyboard

Standard output stdout Screen

Standard error stderr Your screen

The file pointers are the means to access the file for reading and writing purpose. This
section explains how to read values from the screen and how to print the result on the
screen.

The getchar() and putchar() Functions

The int getchar(void) function reads the next available character from the screen and
returns it as an integer. This function reads only single character at a time. You can
use this method in the loop in case you want to read more than one character from the
screen.

70

The int putchar(int c) function puts the passed character on the screen and returns
the same character. This function puts only single character at a time. You can use this
method in the loop in case you want to display more than one character on the screen.
Check the following example –

#include <stdio.h>
int main() {

 int c;

 printf("Enter a value :");
 c = getchar();

 printf("\nYou entered: ");
 putchar(c);

 return 0;
}

When the above code is compiled and executed, it waits for you to input some text.
When you enter a text and press enter, then the program proceeds and reads only a
single character and displays it as follows −

$./a.out
Enter a value : this is test
You entered: t

The gets() and puts() Functions

The char *gets(char *s) function reads a line from stdin into the buffer pointed to
by s until either a terminating newline or EOF (End of File).

The int puts(const char *s) function writes the string 's' and 'a' trailing newline
to stdout.

NOTE: Though it has been deprecated to use gets() function, Instead of using gets,
you want to use fgets().

#include <stdio.h>
int main() {

 char str[100];

 printf("Enter a value :");

https://www.tutorialspoint.com/c_standard_library/c_function_fgets.htm

71

 gets(str);

 printf("\nYou entered: ");
 puts(str);

 return 0;
}

When the above code is compiled and executed, it waits for you to input some text.
When you enter a text and press enter, then the program proceeds and reads the
complete line till end, and displays it as follows −

$./a.out
Enter a value : this is test
You entered: this is test

The scanf() and printf() Functions

The int scanf(const char *format, ...) function reads the input from the standard input
stream stdin and scans that input according to the format provided.

The int printf(const char *format, ...) function writes the output to the standard output
stream stdout and produces the output according to the format provided.

The format can be a simple constant string, but you can specify %s, %d, %c, %f, etc.,
to print or read strings, integer, character or float respectively. There are many other
formatting options available which can be used based on requirements. Let us now
proceed with a simple example to understand the concepts better –

#include <stdio.h>
int main() {

 char str[100];
 int i;

 printf("Enter a value :");
 scanf("%s %d", str, &i);

 printf("\nYou entered: %s %d ", str, i);

 return 0;
}

72

When the above code is compiled and executed, it waits for you to input some text.
When you enter a text and press enter, then program proceeds and reads the input
and displays it as follows −

$./a.out
Enter a value : seven 7
You entered: seven 7

Here, it should be noted that scanf() expects input in the same format as you provided
%s and %d, which means you have to provide valid inputs like "string integer". If you
provide "string string" or "integer integer", then it will be assumed as wrong input.
Secondly, while reading a string, scanf() stops reading as soon as it encounters a
space, so "this is test" are three strings for scanf().

Fundamental Data Types and Storage Classes:

Character types

A storage class represents the visibility and a location of a variable. It tells from what
part of code we can access a variable. A storage class is used to describe the following
things:

 The variable scope.

 The location where the variable will be stored.

 The initialized value of a variable.

 A lifetime of a variable.

 Who can access a variable?

Thus a storage class is used to represent the information about a variable.

NOTE: A variable is not only associated with a data type, its value but also a storage
class.

There are total four types of standard storage classes. The table below represents the
storage classes in 'C'.

73

Storage class Purpose

auto It is a default storage class.

extern It is a global variable.

static It is a local variable which is capable of
returning a value even when control is
transferred to the function call.

register It is a variable which is stored inside a
Register.

 Auto storage class

 Extern storage class

o First File: main.c
o Second File: original.c

 Static storage class

 Register storage class

Auto storage class

The variables defined using auto storage class are called as local variables. Auto
stands for automatic storage class. A variable is in auto storage class by default if it is
not explicitly specified.

The scope of an auto variable is limited with the particular block only. Once the control
goes out of the block, the access is destroyed. This means only the block in which the
auto variable is declared can access it.

A keyword auto is used to define an auto storage class. By default, an auto variable
contains a garbage value.

Example, auto int age;

The program below defines a function with has two local variables

https://www.guru99.com/c-storage-classes.html#1
https://www.guru99.com/c-storage-classes.html#2
https://www.guru99.com/c-storage-classes.html#3
https://www.guru99.com/c-storage-classes.html#4
https://www.guru99.com/c-storage-classes.html#5
https://www.guru99.com/c-storage-classes.html#6

74

int add(void) {
 int a=13;
 auto int b=48;
return a+b;}

We take another program which shows the scope level "visibility level" for auto variables
in each block code which are independently to each other:

#include <stdio.h>
int main()
{
 auto int j = 1;
 {
 auto int j= 2;
 {
 auto int j = 3;
 printf (" %d ", j);
 }
 printf ("\t %d ",j);
 }
 printf("%d\n", j);}

OUTPUT:

 3 2 1

Extern storage class

Extern stands for external storage class. Extern storage class is used when we have
global functions or variables which are shared between two or more files.

Keyword extern is used to declaring a global variable or function in another file to
provide the reference of variable or function which have been already defined in the
original file.

The variables defined using an extern keyword are called as global variables. These
variables are accessible throughout the program. Notice that the extern variable cannot
be initialized it has already been defined in the original file

Example, extern void display();

First File: main.c

#include <stdio.h>
extern i;
main() {

75

 printf("value of the external integer is = %d\n", i);
 return 0;}

Second File: original.c

#include <stdio.h>
i=48;

Result:

 value of the external integer is = 48

In order to compile and run the above code, follow the below steps

Step 1) Create new project,

1. Select Console Application
2. Click Go

76

Step 2) Select C and click Next

Step 3) Click Next

77

Step 4) Enter details and click Next

Step 5) Click Finish

78

Step 6) Put the main code as shown in the previous program in the main.c file and save
it

Step 7) Create a new C file [File -> new -> Empty File , save (as original.c) and add it
to the current project by clicking "OK" in the dialogue box .

Step 8) Put and save the C code of the original.c file shown in the previous example
without the main() function.

79

Step 9) Build and run your project. The result is shown in the next figure

Static storage class

The static variables are used within function/ file as local static variables. They can also
be used as a global variable

 Static local variable is a local variable that retains and stores its value between
function calls or block and remains visible only to the function or block in which it
is defined.

 Static global variables are global variables visible only to the file in which it is
declared.

Example: static int count = 10;

Keep in mind that static variable has a default initial value zero and is initialized only
once in its lifetime.

#include <stdio.h> /* function declaration */
void next(void);
static int counter = 7; /* global variable */
main() {
 while(counter<10) {
 next();
 counter++; }
return 0;}
void next(void) { /* function definition */
 static int iteration = 13; /* local static variable */
 iteration ++;
 printf("iteration=%d and counter= %d\n", iteration, counter);}

Result:

iteration=14 and counter= 7
iteration=15 and counter= 8
iteration=16 and counter= 9

Global variables are accessible throughout the file whereas static variables are
accessible only to the particular part of a code.

The lifespan of a static variable is in the entire program code. A variable which is
declared or initialized using static keyword always contains zero as a default value.

80

Register storage class

You can use the register storage class when you want to store local variables within
functions or blocks in CPU registers instead of RAM to have quick access to these
variables. For example, "counters" are a good candidate to be stored in the register.

Example: register int age;

The keyword register is used to declare a register storage class. The variables
declared using register storage class has lifespan throughout the program.

It is similar to the auto storage class. The variable is limited to the particular block. The
only difference is that the variables declared using register storage class are stored
inside CPU registers instead of a memory. Register has faster access than that of the
main memory.

The variables declared using register storage class has no default value. These
variables are often declared at the beginning of a program.

#include <stdio.h> /* function declaration */
main() {
{register int weight;
int *ptr=&weight ;/*it produces an error when the compilation occurs ,we cannot get a m
emory location when dealing with CPU register*/}
}

OUTPUT:

error: address of register variable 'weight' requested

The next table summarizes the principal features of each storage class which are
commonly used in C programming

Storage

Class

Declaration Storage Default

Initial Value

Scope Lifetime

auto Inside a

function/block

Memory Unpredictable Within the

function/block

Within the

function/block

register Inside a

function/block

CPU

Registers

Garbage Within the

function/block

Within the

function/block

81

extern Outside all

functions

Memory Zero Entire the file

and other files

where the

variable is

declared as

extern

program

runtime

Static

(local)

Inside a

function/block

Memory Zero Within the

function/block

program

runtime

Static

(global)

Outside all

functions

Memory Zero Global program

runtime

Summary

In this tutorial we have discussed storage classes in C, to sum up:

 A storage class is used to represent additional information about a variable.

 Storage class represents the scope and lifespan of a variable.

 It also tells who can access a variable and from where?

 Auto, extern, register, static are the four storage classes in 'C'.

 auto is used for a local variable defined within a block or function

 register is used to store the variable in CPU registers rather memory location for
quick access.

 Static is used for both global and local variables. Each one has its use case
within a C program.

 Extern is used for data sharing between C project files.

Integer

Every programming language has in-built types to differentiate between the nature of
various data (input or output or intermediate). Integer is a common data type which is
widely use in general programming and in scientific computing.

82

Integer is defined as a number which has no fractional component. Numbers which
have a fractional component is known floating point numbers. Despite the fact that
floating point numbers can represent numbers accurately, integers have their own place
in the world of computing due to:

 Integers consumes significantly less space than Floating point numbers

 Calculations using integers are much faster (over 2 times) due to hardware architecture

In C programming language, integer data is represented by its own datatype known
as int. It has several variants which differs based on memory consumption includes:

 int

 long

 short

 long long

Usage

In C, one can define an integer variable as:

int main()
{
 int a = 1;
 short b = 1;
 long c = 1;
 long long d = 1;
}
C
Copy

Signed and Unsigned version

As the range of numbers determined by a datatype like int is limited and both negative
and positive numbers are required, we have two options:

 signed integers: range is equally divided among negative and positive numbers

(including 0)

 unsigned integers: range starts from 0 to the upper positive number limit

Hence, unsigned integers are used when:

83

 negative numbers are not required

 increase the range of positive number by double

One can defined an unsigned integer by placing the keyword unsigned before the
usual declaration/ initialization like:

int main()
{
 unsigned int a = 1;
 unsigned long b = 1;
}
C
Copy

The default declaration is the signed version signed.
Hence, there are 8 possible types for integer:

 int

 unsigned int

 short

 unsigned short

 long

 unsigned long

 long long

 unsigned long long

Format specifier

To print a value in C using printf, one needs to specify the datatype of the data to be
printed. The format specifier of each variant of integer datatype is different in C.

For instance, int datatype has %d as the format specifier.

Following code demonstrates the idea:

84

int main()
{
 unsigned int a = 1;
 int b = 1;
 unsigned long c = 1;
 long long d = 1;
 printf("%u", a);
 printf("%d", b);
 printf("%lu", c);
 printf("%lld", d);
}
C
Copy

Range and memory consumption

One can find the memory consumed by a data type as follows:

int main()
{
 printf("size of int : %d\n",sizeof(int));
 printf("size of signed int : %d\n",sizeof(signed int));
 printf("size of unsigned long : %d\n",sizeof(unsigned long));
 return 0;
}
C
Copy

Ideally, memory consumed by the signed and unsigned variants are the same. It only
differs in the range.

If Integer data type int is of 4 bytes, then the range is calculated as follows:

4 bytes = 4 X 8 = 32 bits

Each bit can store 2 values (0 and 1)

Hence, integer data type can hold 2^32 values

85

In signed version, the most significant bit is reserved for sign. So, 0 denotes positive
number and 1 denotes negative number.

Hence

 range of unsigned int is 0 to 2^32-1

 range of signed int is -2^31 to 2^31-1

The exact value of memory and range depends on the hardware but remains same
across several hardware types. Following table summarizes the values:

DATA TYPE
SIZE (IN
BYTES) RANGE

FORMAT
SPECIFIER

int 4 -2147483648 to 2147483647 %d

unsigned int 4 0 to 4294967295 %u

short 2 -32768 to 32767 %hd

unsigned
short 2 0 to 65535 %hu

long 8
-9223372036854775808 to

9223372036854775807 %ld

unsigned
long 8 0 to 18446744073709551615 %lu

long long 8
-9223372036854775808 to

9223372036854775807 %lld

unsigned
long long 8 0 to 18446744073709551615 %llu

In some platforms, long long and long refer to the same size but in other platforms, long
long can be double the size of long.

In general, the rules are:

 signed and unsigned version will have the same size

 size of int is 4 bytes

 size of short <= size of int

86

 size of int <= size of long

 size of long <= size of long long

Integer overflow

As we have seen that each integer datatype has a fixed range beyond which it will fail.
In case, a number falls beyond the range of a datatype, then the code will wrap around
to give an errorneous result.

Consider the case of int where the range is -2147483648 to 2147483647.
Key points to note in case of signed int are:

 The number after 2147483647 is -2147483648.

 The number after -2147483648 is -2147483647

 2147483648 is represented as -2147483648 as it is wrapped around

Short

Short int is integer variable. They are used to store value upto -32,768 to 32,767. The
%hd is a short int placeholder(format specifier) that will be replaced by the value of
short integer variable ‗a‘ when the printf statement is executed.

Program

87

Program Source

#include <stdio.h>

int main()

{

 short int a=32000;

 printf("Value of 'a' = %hd",a);

 return 0;

}

Long

Long is a data type used in programming languages, such as Java, C++, and C#.
A constant or variable defined as long can store a single 64-bit signed integer.

So what constitutes a 64-bit signed integer? It helps to break down each word, starting
from right to left. An integer is a whole number that does not include a decimal point.
Examples include 1, 99, or 234536. "Signed" means the number can be either positive
or negative, since it may be preceded by a minus (-) symbol. 64-bit means the number
can store 263 or 18,446,744,073,709,551,616 different values (since one bit is used for
the sign). Because the long data type is signed, the possible integers range from -
9,223,372,036,854,775,808 to 9,223,372,036,854,775,807, including 0.

In modern programming languages, the standard integer (int) data type typically stores
a 32-bit whole number. Therefore, if a variable or constant may potentially store a

https://techterms.com/definition/datatype
https://techterms.com/definition/java
https://techterms.com/definition/cplusplus
https://techterms.com/definition/c_sharp
https://techterms.com/definition/constant
https://techterms.com/definition/variable
https://techterms.com/definition/integer
https://techterms.com/definition/programming_language

88

number larger than 2,147,483,647 (231 ÷ 2), it should be defined as a long instead of
an int.

Unsigned

char is the most basic data type in C. It stores a single character and requires a single
byte of memory in almost all compilers.
Now character datatype can be divided into 2 types:

1. signed char

2. unsigned char

https://www.geeksforgeeks.org/data-types-in-c/

89

unsigned char is a character datatype where the variable consumes all the 8 bits of the
memory and there is no sign bit (which is there in signed char). So it means that the
range of unsigned char data type ranges from 0 to 255.

Syntax:

unsigned char [variable_name] = [value]

Example:

unsigned char ch = 'a';

 Initializing an unsigned char: Here we try to insert a char in the unsigned char
variable with the help of ASCII value. So the ASCII value 97 will be converted to a
character value, i.e. ‗a‘ and it will be inserted in unsigned char.
filter_none
edit
play_arrow
brightness_4

// C program to show unsigned char

#include <stdio.h>

int main()
{

 int chr = 97;
 unsigned char i = chr;
 printf("unsigned char: %c\n", i);

 return 0;
}

Output:

unsigned char: a

Initializing an unsigned char with signed value: Here we try to insert a char in the
unsigned char variable with the help of ASCII value. So the ASCII value -1 will be
first converted to a range 0-255 by rounding. So it will be 255. Now, this value will be
converted to a character value, i.e. ‗ÿ‘ and it will be inserted in unsigned char.
filter_none
edit
play_arrow
brightness_4

90

// C program to show unsigned char

#include <stdio.h>

int main()
{

 int chr = -1;
 unsigned char i = chr;
 printf("unsigned char: %c\n", i);

 return 0;
}

Output:

unsigned char: ÿ

single and double-precision floating point

There are a few different ways to think about pi. As apple, pumpkin and key lime … or

as the different ways to represent the mathematical constant of ℼ, 3.14159, or, in binary,

a long line of ones and zeroes.

An irrational number, pi has decimal digits that go on forever without repeating. So
when doing calculations with pi, both humans and computers must pick how many
decimal digits to include before truncating or rounding the number.

In grade school, one might do the math by hand, stopping at 3.14. A high schooler‘s
graphing calculator might go to 10 decimal places — using a higher level of detail to
express the same number. In computer science, that‘s called precision. Rather than
decimals, it‘s usually measured in bits, or binary digits.

For complex scientific simulations, developers have long relied on high-precision math
to understand events like the Big Bang or to predict the interaction of millions of atoms.

Having more bits or decimal places to represent each number gives scientists the
flexibility to represent a larger range of values, with room for a fluctuating number of
digits on either side of the decimal point during the course of a computation. With this
range, they can run precise calculations for the largest galaxies and the smallest
particles.

91

But the higher precision level a machine uses, the more computational resources, data
transfer and memory storage it requires. It costs more and it consumes more power.

Since not every workload requires high precision, AI and HPC researchers can benefit
by mixing and matching different levels of precision. NVIDIA Tensor Core GPUs support
multi- and mixed-precision techniques, allowing developers to optimize computational
resources and speed up the training of AI applications and those
apps‘ inferencing capabilities.

Difference Between Single-Precision, Double-Precision and Half-Precision

Floating-Point Format

The IEEE Standard for Floating-Point Arithmetic is the common convention for
representing numbers in binary on computers. In double-precision format, each number
takes up 64 bits. Single-precision format uses 32 bits, while half-precision is just 16 bits.

To see how this works, let‘s return to pi. In traditional scientific notation, pi is written as
3.14 x 100. But computers store that information in binary as a floating-point, a series of
ones and zeroes that represent a number and its corresponding exponent, in this case
1.1001001 x 21.
In single-precision, 32-bit format, one bit is used to tell whether the number is positive or
negative. Eight bits are reserved for the exponent, which (because it‘s binary) is 2
raised to some power. The remaining 23 bits are used to represent the digits that make
up the number, called the significand.

Double precision instead reserves 11 bits for the exponent and 52 bits for the
significand, dramatically expanding the range and size of numbers it can represent. Half
precision takes an even smaller slice of the pie, with just five for bits for the exponent
and 10 for the significand.

Here‘s what pi looks like at each precision level:

https://www.nvidia.com/en-gb/data-center/tensorcore/
https://blogs.nvidia.com/blog/2016/08/22/difference-deep-learning-training-inference-ai/
https://blogs.nvidia.com/blog/2016/08/22/difference-deep-learning-training-inference-ai/
https://blogs.nvidia.com/wp-content/uploads/2019/11/ieee_formats.jpg
https://blogs.nvidia.com/wp-content/uploads/2019/11/ieee_formats.jpg
https://blogs.nvidia.com/wp-content/uploads/2019/11/pi_precision.jpg

92

Difference Between Multi-Precision and Mixed-Precision Computing

Multi-precision computing means using processors that are capable of calculating at
different precisions — using double precision when needed, and relying on half- or
single-precision arithmetic for other parts of the application.

Mixed-precision, also known as transprecision, computing instead uses different
precision levels within a single operation to achieve computational efficiency without
sacrificing accuracy.

In mixed precision, calculations start with half-precision values for rapid matrix math.
But as the numbers are computed, the machine stores the result at a higher precision.
For instance, if multiplying two 16-bit matrices together, the answer is 32 bits in size.

With this method, by the time the application gets to the end of a calculation, the
accumulated answers are comparable in accuracy to running the whole thing in double-
precision arithmetic.

This technique can accelerate traditional double-precision applications by up to 25x,
while shrinking the memory, runtime and power consumption required to run them. It
can be used for AI and simulation HPC workloads.

As mixed-precision arithmetic grew in popularity for modern supercomputing
applications, HPC luminary Jack Dongarra outlined a new benchmark, HPL-AI, to
estimate the performance of supercomputers on mixed-precision calculations. When
NVIDIA ran HPL-AI computations in a test run on Summit, the fastest supercomputer in
the world, the system achieved unprecedented performance levels of nearly 550
petaflops, over 3x faster than its official performance on the TOP500 ranking of
supercomputers.

How to Get Started with Mixed-Precision Computing

NVIDIA Volta and Turing GPUs feature Tensor Cores, which are built to simplify and
accelerate multi- and mixed-precision computing. And with just a few lines of code,
developers can enable the automatic mixed-precision feature in the TensorFlow,
PyTorch and MXNet deep learning frameworks. The tool gives researchers speedups of
up to 3x for AI training.

The NGC catalog of GPU-accelerated software also includes iterative refinement solver
and cuTensor libraries that make it easy to deploy mixed-precision applications for
HPC.

https://blogs.nvidia.com/blog/2019/06/17/hpc-ai-performance-record-summit/
https://blogs.nvidia.com/blog/2019/06/17/hpc-ai-performance-record-summit/
https://developer.nvidia.com/tensor-cores
https://developer.nvidia.com/automatic-mixed-precision
https://www.nvidia.com/en-us/gpu-cloud/containers/

93

For more information, check out our developer resources on training with mixed
precision.

What Is Mixed-Precision Used for?

Researchers and companies rely on the mixed-precision capabilities of NVIDIA GPUs to
power scientific simulation, AI and natural language processing workloads. A few
examples:

Earth Sciences

 Researchers from the University of Tokyo, Oak Ridge National Laboratory and the
Swiss National Supercomputing Center used AI and mixed-precision techniques for
earthquake simulation. Using a 3D simulation of the city of Tokyo, the scientists
modeled how a seismic wave would impact hard soil, soft soil, above-ground buildings,
underground malls and subway systems. They achieved a 25x speedup with their new
model, which ran on the Summit supercomputer and used a combination of double-,
single- and half-precision calculations.

 A Gordon Bell prize-winning team from Lawrence Berkeley National Laboratory used AI
to identify extreme weather patterns from high-resolution climate simulations, helping
scientists analyze how extreme weather is likely to change in the future. Using the
mixed-precision capabilities of NVIDIA V100 Tensor Core GPUs on Summit, they
achieved performance of 1.13 exaflops.

Medical Research and Healthcare

 San Francisco-based Fathom, a member of the NVIDIA Inception virtual accelerator
program, is using mixed-precision computing on NVIDIA V100 Tensor Core GPUs to
speed up training of its deep learning algorithms, which automate medical coding. The
startup works with many of the largest medical coding operations in the U.S., turning
doctors‘ typed notes into alphanumeric codes that represent every diagnosis and
procedure insurance providers and patients are billed for.

 Researchers at Oak Ridge National Laboratory were awarded the Gordon Bell prize for
their groundbreaking work on opioid addiction, which leveraged mixed-precision
techniques to achieve a peak throughput of 2.31 exaops. The research analyzes
genetic variations within a population, identifying gene patterns that contribute to
complex traits.

Nuclear Energy

 Nuclear fusion reactions are highly unstable and tricky for scientists to sustain for more
than a few seconds. Another team at Oak Ridge is simulating these reactions to give
physicists more information about the variables at play within the reactor. Using mixed-

https://docs.nvidia.com/deeplearning/sdk/pdf/Training-Mixed-Precision-User-Guide.pdf
https://docs.nvidia.com/deeplearning/sdk/pdf/Training-Mixed-Precision-User-Guide.pdf
https://devblogs.nvidia.com/tensor-cores-mixed-precision-scientific-computing/
https://devblogs.nvidia.com/tensor-cores-mixed-precision-scientific-computing/
https://dl.acm.org/citation.cfm?id=3291722
https://dl.acm.org/citation.cfm?id=3291722
https://blogs.nvidia.com/blog/2018/11/16/nvidia-two-gordon-bell-prize/
https://dl.acm.org/citation.cfm?id=3291724
https://dl.acm.org/citation.cfm?id=3291724
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://blogs.nvidia.com/blog/2019/09/12/fathom-ai-medical-coding/
https://www.nvidia.com/en-us/deep-learning-ai/startups/
https://dl.acm.org/citation.cfm?id=3291732
https://www.ornl.gov/news/david-green-teaming-solve-questions-fusion

94

precision capabilities of Tensor Core GPUs, the team was able to accelerate their
simulations by 3.5x.

storage classes

Storage classes in C are used to determine the lifetime, visibility, memory location, and
initial value of a variable. There are four types of storage classes in C

o Automatic

o External

o Static

o Register

Storage

Classes

Storage

Place

Default

Value

Scope Lifetime

auto RAM Garbage

Value

Local Within function

extern RAM Zero Global Till the end of the main program

Maybe declared anywhere in the

program

static RAM Zero Local Till the end of the main program,

Retains value between multiple

functions call

register Register Garbage

Value

Local Within the function

Automatic

o Automatic variables are allocated memory automatically at runtime.

o The visibility of the automatic variables is limited to the block in which they are

defined.

95

The scope of the automatic variables is limited to the block in which they are
defined.

o The automatic variables are initialized to garbage by default.

o The memory assigned to automatic variables gets freed upon exiting from the

block.

o The keyword used for defining automatic variables is auto.

o Every local variable is automatic in C by default.

Example 1

1. #include <stdio.h>

2. int main()

3. {

4. int a; //auto

5. char b;

6. float c;

7. printf("%d %c %f",a,b,c); // printing initial default value of automatic variables a, b, and c

.

8. return 0;

9. }

Output:

garbage garbage garbage

Example 2

1. #include <stdio.h>

2. int main()

3. {

4. int a = 10,i;

5. printf("%d ",++a);

6. {

7. int a = 20;

8. for (i=0;i<3;i++)

9. {

10. printf("%d ",a); // 20 will be printed 3 times since it is the local value of a

11. }

12. }

13. printf("%d ",a); // 11 will be printed since the scope of a = 20 is ended.

14. }

96

Output:

 11 20 20 20 11

Static

o The variables defined as static specifier can hold their value between the multiple

function calls.

o Static local variables are visible only to the function or the block in which they are

defined.

o A same static variable can be declared many times but can be assigned at only

one time.

o Default initial value of the static integral variable is 0 otherwise null.

o The visibility of the static global variable is limited to the file in which it has

declared.

o The keyword used to define static variable is static.

Example 1

1. #include<stdio.h>

2. static char c;

3. static int i;

4. static float f;

5. static char s[100];

6. void main ()

7. {

8. printf("%d %d %f %s",c,i,f); // the initial default value of c, i, and f will be printed.

9. }

Output:

0 0 0.000000 (null)

Example 2

1. #include<stdio.h>

2. void sum()

3. {

4. static int a = 10;

5. static int b = 24;

6. printf("%d %d \n",a,b);

7. a++;

8. b++;

97

9. }

10. void main()

11. {

12. int i;

13. for(i = 0; i< 3; i++)

14. {

15. sum(); // The static variables holds their value between multiple function calls.

16. }

17. }

Output:

10 24
11 25
12 26

Register

o The variables defined as the register is allocated the memory into the CPU

registers depending upon the size of the memory remaining in the CPU.

o We can not dereference the register variables, i.e., we can not use &operator for

the register variable.

o The access time of the register variables is faster than the automatic variables.

o The initial default value of the register local variables is 0.

o The register keyword is used for the variable which should be stored in the CPU

register. However, it is compiler?s choice whether or not; the variables can be

stored in the register.

o We can store pointers into the register, i.e., a register can store the address of a

variable.

o Static variables can not be stored into the register since we can not use more

than one storage specifier for the same variable.

Example 1

1. #include <stdio.h>

2. int main()

3. {

4. register int a; // variable a is allocated memory in the CPU register. The initial default v

alue of a is 0.

5. printf("%d",a);

6. }

98

Output:

0

Example 2

1. #include <stdio.h>

2. int main()

3. {

4. register int a = 0;

5. printf("%u",&a); // This will give a compile time error since we can not access the addres

s of a register variable.

6. }

Output:

main.c:5:5: error: address of register variable ?a? requested
printf("%u",&a);
^~~~~~

External

o The external storage class is used to tell the compiler that the variable defined as

extern is declared with an external linkage elsewhere in the program.

o The variables declared as extern are not allocated any memory. It is only

declaration and intended to specify that the variable is declared elsewhere in the

program.

o The default initial value of external integral type is 0 otherwise null.

o We can only initialize the extern variable globally, i.e., we can not initialize the

external variable within any block or method.

o An external variable can be declared many times but can be initialized at only

once.

o If a variable is declared as external then the compiler searches for that variable

to be initialized somewhere in the program which may be extern or static. If it is

not, then the compiler will show an error.

Example 1

1. #include <stdio.h>

2. int main()

3. {

4. extern int a;

5. printf("%d",a);

99

6. }

Output

main.c:(.text+0x6): undefined reference to `a'
collect2: error: ld returned 1 exit status

Example 2

1. #include <stdio.h>

2. int a;

3. int main()

4. {

5. extern int a; // variable a is defined globally, the memory will not be allocated to a

6. printf("%d",a);

7. }

Output

0

Example 3

1. #include <stdio.h>

2. int a;

3. int main()

4. {

5. extern int a = 0; // this will show a compiler error since we can not use extern and initiali

zer at same time

6. printf("%d",a);

7. }

Output

compile time error
main.c: In function ?main?:
main.c:5:16: error: ?a? has both ?extern? and initializer
extern int a = 0;

Example 4

1. #include <stdio.h>

2. int main()

3. {

4. extern int a; // Compiler will search here for a variable a defined and initialized somewh

ere in the pogram or not.

5. printf("%d",a);

100

6. }

7. int a = 20;

Output

20

Example 5

1. extern int a;

2. int a = 10;

3. #include <stdio.h>

4. int main()

5. {

6. printf("%d",a);

7. }

8. int a = 20; // compiler will show an error at this line

Output

compile time error

automatic

The variables which are declared inside a block are known as automatic or local
variables; these variables allocates memory automatically upon entry to that block and
free the occupied memory upon exit from that block.

These variables have local scope to that block only that means these can be accessed
in which variable declared.

Keyword 'auto' may be used to declare automatic variable but we can declare these
variable without using 'auto' keywords.

Consider the following declarations

 int main()

 {

 auto int a;

 int b;

101

 return 0;

 }

Here, both variables a and b are automatic variables.

Automatic variables in other user defined functions

An automatic or local variable can be declared in any user define function in the starting
of the block.

Consider the following code

void myFunction(void)
{
 int x;
 float y;
 char z;
 ...
}

int main()
{
 int a,b;
 myFunction();

 return 0;
}

In this code snippet, variables x, y and z are the local/automatic variable
of myFunction() function, while variables a and b are the local/automatic variables
of main() function.

Register

Register variables tell the compiler to store the variable in CPU register instead of
memory. Frequently used variables are kept in registers and they have faster
accessibility. We can never get the addresses of these variables. ―register‖ keyword is
used to declare the register variables.

Scope − They are local to the function.

102

Default value − Default initialized value is the garbage value.

Lifetime − Till the end of the execution of the block in which it is defined.

Here is an example of register variable in C language,

Example

#include <stdio.h>

int main() {

 register char x = 'S';

 register int a = 10;

 auto int b = 8;

 printf("The value of register variable b : %c\n",x);

 printf("The sum of auto and register variable : %d",(a+b));

 return 0;

}

Output

The value of register variable b : S
The sum of auto and register variable : 18

Register keyword can be used with pointer also. It can have address of memory
location. It will not create any error.

Here is an example of register keyword in C language

Example

#include<stdio.h>

int main() {

 int i = 10;

 register int *a = &i;

 printf("The value of pointer : %d", *a);

 getchar();

 return 0;

103

}

Output

The value of pointer : 10

static and external

In C, variable declaration & definition are implicitly tied together.

Here, definition = storage allocation + possible initialization.

By default, functions and global variables are visible within all linked files.

―extern‖ keyword allows for declaration sans definition.

But, this would mean that global variables are visible from everywhere.

So, ―static‖ keyword lets us limit the visibility of things within the same file. A

static global variable or a static function is ―seen‖ only in the file it‘s declared in (so that

the user won‘t be able to access them. This is encapsulation, a good practice).

Thus, ―static‖ forces the lifetime of variables to be equivalent to global.

This means that static variables are stored in static memory as opposed to stack. Thus,

having a static variable inside a function would keeps its value between function

invocations. This could lead to code being not thread-safe and harder to understand.

104

Here, variable ―I‖ is not found in file sum.c

105

Here, variable ―I‖ declared in sumWithI function has garbage value or zero initial value
[depending on system]

extern keyword helps us find the variable ―I‖ from main.c

the static variable initialized in main.c does not allow the variable to be visible outside
the file.
the function sumWithI is made static and thus cannot be accessed from main.c

106

the static variable inside a function holds its value on successive function calls.

Recap: By default, variables declared inside functions have local lifetimes (stack-bound)

and using ―static‖ lets us change their storage class to static (aka ―global‖)

Operators and Expressions:

Using numeric and relational operators

Caché supports many different operators, which perform various actions, including
mathematical actions, logical comparisons, and so on. Operators act on expressions,
which are variables or other entities that ultimately evaluated to a value. This chapter
describes expressions and the various ObjectScript operators. It contains the following
topics:

 Introduction to Operators and Expressions

 String-to-Number Conversion

 Arithmetic Operators

 Logical Comparison Operators

 String Concatenate Operator

 Numeric Relational Operators

 String Relational Operators

 Pattern Matching

 Indirection

Introduction to Operators and Expressions

Operators are symbolic characters that specify the action to be performed on their
associated operands. Each operand consists of one or more expressions or expression
atoms. When used together, an operator and its associated operands have the following
form:

https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_intro
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_str2num
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_arithmetic
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_logicalcomp
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_string
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_numrel
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_strrel
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_pattern
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_indirection

107

[operand] operator operand

Some operators take only one operand and are known as unary operators; others take
two operands and are known as binary operators.

An operator and any of its operands taken together constitute an expression. Such
expressions produce a result that is the effect of the operator on the operand(s). They
are classified based on the types of operators they contain.

 An arithmetic expression contains arithmetic operators, gives a numeric
interpretation to the operands, and produces a numeric result.

 A string expression contains string operators, gives a string interpretation to the
operands, and produces a string result.

 A logical expression contains relational and logical operators, gives a logical
interpretation to the operands, and produces a boolean result: TRUE (1) or FALSE
(0).

Table of Operator Symbols

ObjectScript includes the following operators:

ObjectScript Operators

Operator Operation Performed

. Object property or method access.

() Array index or function call arguments.

+ Addition (Binary), Positive (Unary)

– Subtraction (Binary), Negative (Unary)

* Multiplication

/ Division

108

\ Integer division

** Exponentiation

Modulus (remainder)

_ Concatenation

' Logical complement (NOT)

= Test for equality, Assignment

'= Test for non-equality

> Greater than

'>

<=
Not greater than (less than or equal to)

< Less than

'<

>=
Not less than (greater than or equal to)

[Contains

] Follows

]] Sorts After

&

&&
Logical AND (&& is ―short-circuit‖ AND)

!

||
Logical OR (|| is ―short-circuit‖ OR)

https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_string

109

@ Indirection

? Pattern Match

These are described in more detail in the following sections.

Operator Precedence

Operator precedence in ObjectScript is strictly left-to-right; within an expression
operations are performed in the order in which they appear. This is different from other
languages in which certain operators have higher precedence than others. You can use
explicit parentheses within an expression to force certain operations to be carried ahead
of others.

 WRITE "1 + 2 * 3 = ", 1 + 2 * 3,! // returns 9
 WRITE "2 * 3 + 1 = ", 2 * 3 + 1,! // returns 7
 WRITE "1 + (2 * 3) = ", 1 + (2 * 3),! // returns 7
 WRITE "2 * (3 + 1) = ", 2 * (3 + 1),! // returns 8

Unary Negative Operators

ObjectScript gives the unary negative operator precedence over the binary arithmetic
operators. ObjectScript first scans a numeric expression and performs any unary
negative operations. Then, ObjectScript evaluates the expression and produces a
result.

 WRITE -123 - 3,! // returns -126
 WRITE -123 + -3,! // returns -126
 WRITE -(123 - 3),! // returns -120

Parentheses and Precedence

You can change the order of evaluation by nesting expressions within each other with
matching parentheses. The parentheses group the enclosed expressions (both
arithmetic and relational) and control the order in which ObjectScript performs
operations on the expressions. Consider the following expression:

110

 SET TorF = ((4 + 7) > (6 + 6)) // False (0)
 WRITE TorF

Here, because of the parentheses, four and seven are added, as are six and six; this
results in the logical expression 11 > 12, which is false. Compare this to:

 SET Value = (4 + 7 > 6 + 6) // 7
 WRITE Value

In this case, precedence proceeds from left to right, so four and seven are added. Their
sum, eleven, is compared to six; since eleven is greater than six, the result of this
logical operation is one (TRUE). One is then added to six, and the result is seven.

Note that the precedence even determines the result type, since the first expression‘s
final operation results in a boolean and the second expression‘s final operation results
in a numeric.

The following example shows multiple levels of nesting:

 WRITE 1+2*3-4*5,! // returns 25
 WRITE 1+(2*3)-4*5,! // returns 15
 WRITE 1+(2*(3-4))*5,! // returns -5
 WRITE 1+(((2*3)-4)*5),! // returns 11

Precedence from the innermost nested expression and proceeds out level by level,
evaluating left to right at each level.

Tip:

For all but the simplest ObjectScript expressions, it is good practice to fully
parenthesize expressions. This is to eliminate any ambiguity about the order of
evaluation and to also eliminate any future questions about the original intention of
the code.

For example, because the ―&&‖ operator, like all operators, is subject to left-to-right
precedence, the final statement in the following code fragment evaluates to 0:

 SET x = 3
 SET y = 2
 IF x && y = 2 {
 WRITE "True",! }
 ELSE {
 WRITE "False",! }

111

This is because the evaluation occurs as follows:

1. The first action is to check if x is defined and has a non-zero value. Since x equals
3, evaluation continues.

2. Next, there is a check if y is defined and has a non-zero value. Since y equals 2,
evaluation continues.

3. Next, the value of 3 && 2 is evaluated. Since neither 3 nor 2 equal 0, this
expression is true and evaluates to 1.

4. The next action is to compare the returned value to 2. Since 1 does not equal 2,
this evaluation returns 0.

For those accustomed to many programming languages, this is an unexpected result. If
the intent is to return True if x is defined with a non-zero value and if y equals 2, then
parentheses are required:

 SET x = 3
 SET y = 2
 IF x && (y = 2) {
 WRITE "True",! }
 ELSE {
 WRITE "False",! }

Functions and Precedence

Some types of expressions, such as functions, can have side effects. Suppose you
have the following logical expression:

 IF var1 = ($$ONE + (var2 * 5)) {
 DO ^Test
 }

ObjectScript first evaluates var1, then the function $$ONE, then var2. It then
multiplies var2 by 5. Finally, ObjectScript tests to see if the result of the addition is equal
to the value in var1. If it is, it executes the DO command to call the Test routine.

As another example, consider the following logical expression:

 SET var8=25,var7=23
 IF var8 = 25 * (var7 < 24) {
 WRITE !,"True" }
 ELSE {
 WRITE !,"False" }

112

Caché evaluates expressions strictly left-to-right. The programmer must use
parentheses to establish any precedence. In this case, Caché first evaluates var8=25,
resulting in 1. It then multiplies this 1 by the results of the expression in parentheses.
Because var7 is less than 24, the expression in parentheses evaluates to 1. Therefore,
Caché multiplies 1 * 1, resulting in 1 (true).

Expressions

An ObjectScript expression is one or more ―tokens‖ that can be evaluated to yield a
value. The simplest expression is simply a literal or variable:

 SET expr = 22
 SET expr = "hello"
 SET expr = x

You can create more complex expressions using arrays, operators, or one of the many
ObjectScript functions:

 SET expr = +x
 SET expr = x + 22
 SET expr = array(1)
 SET expr = ^data("x",1)
 SET expr = $Length(x)

An expression may consist of, or include, an object property, instance method call, or
class method call:

 SET expr = person.Name
 SET expr = obj.Add(1,2)
 SET expr = ##class(MyApp.MyClass).Method()

You can directly invoke an ObjectScript routine call within an expression by placing $$
in front of the routine call:

 SET expr = $$MyFunc^MyRoutine(1)

Expressions can be classified according to what kind of value they return:

 An arithmetic expression contains arithmetic operators, gives a numeric
interpretation to the operands, and produces a numeric result:

113

 SET expr = 1 + 2
 SET expr = +x
 SET expr = a + b

Note that a string used within an arithmetic expression is evaluated as a numeric
value (or 0 if it is not a valid numeric value). Also note that using the unary
addition operator (+) will implicitly convert a string value to a numeric value.

 A string expression contains string operators, gives a string interpretation to the
operands, and produces a string result.

 SET expr = "hello"
 SET expr = "hello" _ x

 A logical expression contains relational and logical operators, gives a logical
interpretation to the operands, and produces a boolean result: TRUE (1) or FALSE
(0):

 SET expr = 1 && 0
 SET expr = a && b
 SET expr = a > b

 An object expression produces an object reference as a result:
 SET expr = object
 SET expr = employee.Company

 SET expr = ##class(Person).%New()

Logical Expressions

Logical expressions use logical operators, numeric relational operators, and string
relational operators. They evaluate expressions and result in a Boolean value: 1 (TRUE)
or 0 (FALSE). Logical expressions are most commonly used with:

 The IF command
 The $SELECT function
 Postconditional Expressions

https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_logicalcomp
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_numrel
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_strrel
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_strrel
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=RCOS_cif
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=RCOS_fselect
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_commands#GCOS_commands_pc

114

In a Boolean test, any expression that evaluates to a non-zero numeric value returns a
Boolean 1 (TRUE) value. Any expression that evaluates to a zero numeric value returns
a Boolean 0 (FALSE) value. Caché evaluates a non-numeric string as having a zero
numeric value. For further details, refer to String-to-Number Conversion.

You can combine multiple Boolean logical expressions by using logical operators. Like
all Caché expressions, they are evaluated in strict left-to-right order. There are two
types of logical operators: regular logical operators (& and !) and short-circuit logical
operators (&& and ||).

When regular logical operators are used to combine logical expressions, Caché
evaluates all of the specified expressions, even when the Boolean result is known
before all of the expressions have been evaluated. This assures that all expressions are
valid.

When short-circuit logical operators are used to combine logical expressions, Caché
evaluates only as many expressions as are needed to determine the Boolean result. For
example, if there are multiple AND tests, the first expression that returns 0 determines
the overall Boolean result. Any logical expressions to the right of this expression are not
evaluated. This allows you to avoid unnecessary time-consuming expression
evaluations.

Some commands allow you to specify a comma-separated list as an argument value. In
this case, Caché handles each listed argument like an independent command
statement. Therefore, IF x=7,y=4,z=2 is parsed as IF x=7 THEN IF y=4 THEN IF z=2,
which is functionally identical to the short-circuit logical operators statement IF
(x=7)&&(y=4)&&(z=2).

In the following example, the IF test uses a regular logical operator (&). Therefore, all
functions are executed even though the first function returns 0 (FALSE) which
automatically makes the result of the entire expression FALSE:

LogExp
 IF $$One() & $$Two() {
 WRITE !,"Expression is TRUE." }
 ELSE {
 WRITE !,"Expression is FALSE." }
One()
 WRITE !,"one"
 QUIT 0
Two()
 WRITE !,"two"
 QUIT 1

https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_str2num
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_binand
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_binor
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_binand
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_binor
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_commands#GCOS_cmds_args

115

In the following example, the IF test uses a short-circuit logical operator (&&). Therefore,
the first function is executed and returns 0 (FALSE) which automatically makes the
result of the entire expression FALSE. The second function is not executed:

LogExp
 IF $$One() && $$Two() {
 WRITE !,"Expression is TRUE." }
 ELSE {
 WRITE !,"Expression is FALSE." }
One()
 WRITE !,"one"
 QUIT 0
Two()
 WRITE !,"two"
 QUIT 1

In the following example, the IF test specifies comma-separated arguments. The
comma is not a logical operator, but has the same effect as specifying the short-circuit
&& logical operator. The first function is executed and returns 0 (FALSE) which
automatically makes the result of the entire expression FALSE. The second function is
not executed:

LogExp
 IF $$One(),$$Two() {
 WRITE !,"Expression is TRUE." }
 ELSE {
 WRITE !,"Expression is FALSE." }
One()
 WRITE !,"one"
 QUIT 0
Two()
 WRITE !,"two"
 QUIT 1

Assignment

Within ObjectScript the SET command is used along with the assignment operator (=)
to assign a value to a variable. The right-hand side of an assignment command is an
expression:

https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=RCOS_cset

116

 SET value = 0
 SET value = a + b

Within ObjectScript it is also possible to use certain functions on the left-hand side of an
assignment command:

 SET pies = "apple,banana,cherry"
 WRITE "Before: ",pies,!

 // set the 3rd comma-delimited piece of pies to coconut
 SET $Piece(pies,",",3) = "coconut"
 WRITE "After: ",pies

String-to-Number Conversion

A string can be numeric, partially numeric, or non-numeric.

 A numeric string consists entirely of numeric characters. For
example, "123", "+123", ".123", "++0007", "-0".

 A partially numeric string is a string that begins with numeric symbols, followed by
non-numeric characters. For example, "3 blind mice", "-12 degrees".

 A non-numeric string begins with a non-numeric character. For example, "
123", "the 3 blind mice", "three blind mice".

Numeric Strings

When a numeric string or partially numeric string is used in an arithmetic expression, it
is interpreted as a number. This numeric value is obtained by scanning the string from
left to right to find the longest sequence of leading characters that can be interpreted as
a numeric literal. The following characters are permitted:

 The digits 0 through 9.

 The PlusSign and MinusSign property values. By default these are the ―+‖ and ―-‖
characters, but are locale-dependent. Use
the %SYS.NLS.Format.GetFormatItem() method to return the current settings.

 The DecimalSeparator property value. By default this is the ―.‖ character, but is
locale-dependent. Use the %SYS.NLS.Format.GetFormatItem() method to return
the current setting.

https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_syntax#GCOS_syntax_lits_num
https://cedocs.intersystems.com/latest/csp/documatic/%25CSP.Documatic.cls?LIBRARY=%25SYS&CLASSNAME=%25SYS.NLS.Format#GetFormatItem
https://cedocs.intersystems.com/latest/csp/documatic/%25CSP.Documatic.cls?LIBRARY=%25SYS&CLASSNAME=%25SYS.NLS.Format#GetFormatItem

117

 The letters ―e‖, and ―E‖ may be included as part of a numeric string when in a
sequence representing scientific notation, such as 4E3.

Note that the NumericGroupSeparator property value (the ―,‖ character, by default)
is not considered a numeric character. Therefore, the string "123,456" is a partially
numeric string that resolves to the number "123".

Numeric strings and partial numeric strings are converted to canonical form prior to
arithmetic operations (such as addition and subtraction) and greater than/less than
comparison operations (<, >, <=, >=). Numeric strings are not converted to canonical
form prior to equality comparisons (=, '=), because these operators are also used for
string comparisons.

The following example shows arithmetic comparisons of numeric strings:

 WRITE "3" + 4,! // returns 7
 WRITE "003.0" + 4,! // returns 7
 WRITE "++--3" + 4,! // returns 7
 WRITE "3 blind mice" + 4,! // returns 7

The following example shows less than (<) comparisons of numeric strings:

 WRITE "3" < 4,! // returns 1
 WRITE "003.0" < 4,! // returns 1
 WRITE "++--3" < 4,! // returns 1
 WRITE "3 blind mice" < 4,! // returns 1

The following example shows <= comparisons of numeric strings:

 WRITE "4" <= 4,! // returns 1
 WRITE "004.0" <= 4,! // returns 1
 WRITE "++--4" <= 4,! // returns 1
 WRITE "4 horsemen" <= 4,! // returns 1

The following example shows equality comparisons of numeric strings. Non-canonical
numeric strings are compared as character strings, not as numbers. Note that –0 is a
non-canonical numeric string, and is therefore compared as a string, not a number:

 WRITE "4" = 4.00,! // returns 1
 WRITE "004.0" = 4,! // returns 0
 WRITE "++--4" = 4,! // returns 0
 WRITE "4 horsemen" = 4,! // returns 0
 WRITE "-4" = -4,! // returns 1

https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_types
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_types#GCOS_types_numcanonical

118

 WRITE "0" = 0,! // returns 1
 WRITE "-0" = 0,! // returns 0
 WRITE "-0" = -0,! // returns 0

Non-numeric Strings

If the leading characters of the string are not numeric characters, the string‘s numeric
value is 0 for all arithmetic operations. For <, >, '>, <=, '<, and >= comparisons a non-
numeric string is also treated as the number 0. Because the equal sign is used for both
the numeric equality operator and the string comparison operator, string comparison
takes precedence for = and '= operations. You can append the PlusSign property value
(+ by default) to force numeric evaluation of a string. This results in the following logical
values, when x and y are different non-numeric strings (for example x=‖Fred‖,
y=‖Wilma‖).

x=y is

FALSE
x=x is TRUE

+x=y is

FALSE
+x=+y is TRUE +x=+x is TRUE

x'=y is TRUE
x'=x is

FALSE
+x'=y is TRUE

+x'=+y is

FALSE

+x'=+x is

FALSE

x<y is

FALSE

x<x is

FALSE

+x<y is

FALSE

+x<+y is

FALSE

+x<+x is

FALSE

x<=y is

TRUE

x<=x is

TRUE

+x<=y is

TRUE

+x<=+y is

TRUE

+x<=+x is

TRUE

Arithmetic Operators

The arithmetic operators interpret their operands as numeric values and produce
numeric results. When operating on a string, an arithmetic operators treats the string as
its numeric value, according to the rules described in the section ―String-to-Number
Conversion.‖

https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_str2num
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GCOS_operators#GCOS_operators_str2num

119

Decimal and $DOUBLE Floating-Point Numbers

Caché supports two representations of decimal-point numbers: ObjectScript decimal
floating-point and IEEE double-precision binary floating-point.

 Caché represents a numeric constant as an ObjectScript decimal floating-point
value by default. This is referred to as a $DECIMAL number. A $DECIMAL
number can exactly represent a fractional value, such as 2.2. You use
the $DECIMAL() function to explicitly convert an IEEE double-precision binary
floating-point number to the corresponding ObjectScript decimal floating-point
number.

 Caché also supports IEEE double-precision binary floating-point values. You use
the $DOUBLE() function to explicitly convert a numeric constant to the
corresponding IEEE double-precision binary floating-point value (referred to as a
$DOUBLE number). A $DOUBLE number can only approximately represent a
fractional value, such as 2.2. $DOUBLE representation is usually preferred when
doing high-speed scientific calculations because most computers include high-
speed hardware for binary floating-point arithmetic.

ObjectScript automatically converts a numeric to the corresponding $DOUBLE value in
the following situations:

 If an arithmetic operation involves a $DOUBLE value, ObjectScript converts all
numbers in the operation to $DOUBLE. For example, 2.2 + $DOUBLE(.1) is the
same as $DOUBLE(2.2) + $DOUBLE(.1).

 If an operation results in a number that is too large to be represented in
ObjectScript decimal floating-point (larger than 9.223372036854775807E145),
ObjectScript automatically converts this number to $DOUBLE, rather than issuing
a <MAXNUMBER> error.

Unary Positive Operator (+)

The unary positive operator (+) gives its single operand a numeric interpretation. If its
operand has a string value, it converts it to a numeric value. It does this by sequentially
parsing the characters of the string as a number, until it encounters an invalid character.
It then returns whatever leading portion of the string was a well-formed numeric. For
example:

 WRITE + "32 dollars and 64 cents" // 32

If the string has no leading numeric characters, the unary positive operator gives the
operand a value of zero. For example:

https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=RCOS_fdecimal
https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=RCOS_fdouble

120

 WRITE + "Thirty-two dollars and 64 cents" // 0

The unary positive operator has no effect on numeric values. It does not alter the sign of
either positive or negative numbers. For example:

 SET x = -23
 WRITE " x: ", x,! // -23
 WRITE "+x: ",+x,! // -23

Unary Negative Operator (-)

The unary negative operator (-) reverses the sign of a numerically interpreted operand.
For example:

 SET x = -60
 WRITE " x: ", x,! // -60
 WRITE "-x: ",-x,! // 60

If its operand has a string value, the unary negative operator interprets it as a numeric
value before reversing its sign. This numeric interpretation is exactly the same as that
performed by the unary positive operator, described above. For example:

 SET x = -23
 WRITE -"32 dollars and 64 cents" // -32

ObjectScript gives the unary negative operator precedence over the binary arithmetic
operators. ObjectScript first scans a numeric expression and performs any unary
negative operations. Then, ObjectScript evaluates the expression and produces a
result.

In the following example, ObjectScript scans the string and encounters the numeric
value of 2 and stops there. It then applies the unary negative operator to the value and
uses the Concatenate operator (_) to concatenate the value ―Rats‖ from the second
string to the numeric value.

 WRITE -"2Cats"_"Rats" // -2Rats

To return the absolute value of a numeric expression, use the $ZABS function.

https://cedocs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=RCOS_fzabs

121

Addition Operator (+)

The addition operator produces the sum of two numerically interpreted operands. It
uses any leading valid numeric characters as the numeric values of the operands and
produces a value that is the sum of the numeric value of the operands.

The following example performs addition on two numeric literals:

 WRITE 2936.22 + 301.45 // 3237.67

The following example performs addition on two locally defined variables:

 SET x = 4
 SET y = 5
 WRITE "x + y = ",x + y // 9

The following example performs string arithmetic on two operands that have leading
digits, adding the resulting numerics:

 WRITE "4 Motorcycles" + "5 bicycles" // 9

The following example illustrates that leading zeros on a numerically evaluated operand
do not affect the results the operator produces:

 WRITE "007" + 10 // 17

Subtraction Operator (-)

The subtraction operator produces the difference between two numerically interpreted
operands. It interprets any leading, valid numeric characters as the numeric values of
the operand and produces a value that is the remainder after subtraction.

The following example performs subtraction on two numeric literals:

 WRITE 2936.22 - 301.45 // 2634.77

The following example performs subtraction on two locally defined variables:

122

 SET x = 4
 SET y = 5
 WRITE "x - y = ",x - y // -1

The following example performs string arithmetic on two operands that have leading
digits, subtracting the resulting numerics:

 WRITE "8 apples" - "4 oranges" // 4

If the operand has no leading numeric characters, ObjectScript assumes its value to be
zero. For example:

 WRITE "8 apples" - "four oranges" // 8

Multiplication Operator (*)

Binary Multiply produces the product of two numerically interpreted operands. It uses
any leading numeric characters as the numeric value of the operands and produces a
result that is the product.

The following example performs multiplication on two numeric literals:

 WRITE 9 * 5.5 // 49.5

The following example performs multiplication on two locally defined variables:

 SET x = 4
 SET y = 5
 WRITE x * y // 20

The following example performs string arithmetic on two operands that have leading
digits, multiplying the resulting numerics:

 WRITE "8 apples" * "4 oranges" // 32

If an operand has no leading numeric characters, Binary Multiply assigns it a value of
zero.

123

 WRITE "8 apples"*"four oranges" // 0

Division Operator (/)

Binary Divide produces the result of dividing two numerically interpreted operands. It
uses any leading numeric characters as the numeric value of the operands and
products a result that is the quotient.

The following example performs division on two numeric literals:

 WRITE 9 / 5.5 // 1.636363636363636364

The following example performs division on two locally defined variables:

 SET x = 4
 SET y = 5
 WRITE x / y // .8

The following example performs string arithmetic on two operands that have leading
digits, dividing the resulting numerics:

 WRITE "8 apples" / "4 oranges" // 2

If the operand has no leading numeric characters, Binary Divide assumes its value to be
zero. For example:

 WRITE "eight apples" / "4 oranges" // 0
 // "8 apples"/"four oranges" generates a <DIVIDE> error

mixed operands and type conversion

When the variables and constants of different types are mixed in an expression ,they
are all converted to the same type .
The compiler converts all operands up to the type of the largest operand , which is
called type promotion .

124

Generally , the lower type of the operator is promoted to higher type operand and the
result will be of the higher type .

The ordering the data type is :
char < int < long < float <double .
Also , an unsigned value out ranks the corresponding signed type .

Conversion Rules :

The following are the rules applicable to the arithmetic operations between two
operators having different data types .

· If char and short int values are used as operands , the char operand is automatically
elevated to int .

· If float and double values are used as operands , the float operand is automatically
elevated to double .

· If int and float values are used as operands , the int operand is automatically elevated
to float .

· If float and double values are used as operands ,the float is automatically elevated to
double .

· If long and unsigned int are used as operands , both the operands are automatically
elevated to unsigned long.

Type Casting :

To convert the value of an expression to a different type ,the expression must be
preceded by the name of the desired data type , enclosed in parenthesis ; (data type)
expression .

This type of conversion is known as type casting . The operators with in C are grouped
hierarchically according to their precedence (i.e, order of evaluation).

Operations with higher precedence are carried out before operations having a lower
precedence . The natural order of evaluation can be altered through the use of
paranthesis.

The arithmetic operators * , / and % fall in to precedence group , + and – falls in to
another . The first group has a higher precedence than the second one .

125

The order in which consecutive operations with in the same precedence group are
carried out is known as associately .with in each of the precedence groups described
above , the associativity is from left to right.

Example Program:

Output :

https://1.bp.blogspot.com/-myP_YDsWZWg/XOlNEf1Hp0I/AAAAAAAAHdI/4yI5k3SVCzQilpkrd3woj_EVUP_YjoYwACLcBGAs/s1600/Screenshot+(65).png
https://1.bp.blogspot.com/-cLDY340k8fQ/XOlNQOjf2aI/AAAAAAAAHdM/Y1Ac6ChaFJMjD7-r9RBjHTGWGDdh1oioQCLcBGAs/s1600/Screenshot+(66).png
https://1.bp.blogspot.com/-myP_YDsWZWg/XOlNEf1Hp0I/AAAAAAAAHdI/4yI5k3SVCzQilpkrd3woj_EVUP_YjoYwACLcBGAs/s1600/Screenshot+(65).png
https://1.bp.blogspot.com/-cLDY340k8fQ/XOlNQOjf2aI/AAAAAAAAHdM/Y1Ac6ChaFJMjD7-r9RBjHTGWGDdh1oioQCLcBGAs/s1600/Screenshot+(66).png

126

Logical operators

Logical operators are mainly used to control program flow. Usually, you will find them as
part of an if, a while, or some other control statement (Chapter 6)

The Logical operators are:

op1 && op2
-- Performs a logical AND of the two operands.

op1 || op2
-- Performs a logical OR of the two operands.

!op1
-- Performs a logical NOT of the operand.

The concept of logical operators is simple. They allow a program to make a decision
based on multiple conditions. Each operand is considered a condition that can be
evaluated to a true or false value. Then the value of the conditions is used to determine
the overall value of the op1 operator op2 or !op1 grouping. The following examples
demonstrate different ways that logical conditions can be used.

The && operator is used to determine whether both operands or conditions are
true and.pl.

For example:

if ($firstVar == 10 && $secondVar == 9) {

 print("Error!");

};

If either of the two conditions is false or incorrect, then the print command is bypassed.

The || operator is used to determine whether either of the conditions is true.

For example:

if ($firstVar == 9 || $firstVar == 10) {

 print("Error!");

If either of the two conditions is true, then the print command is run.

Caution If the first operand of the || operator evaluates to true, the second operand will
not be evaluated. This could be a source of bugs if you are not careful.

https://users.cs.cf.ac.uk/Dave.Marshall/PERL/node41.html#ch:control

127

For instance, in the following code fragment:

if ($firstVar++ || $secondVar++) { print("\n"); }

variable $secondVar will not be incremented if $firstVar++ evaluates to true.

The ! operator is used to convert true values to false and false values to true. In other
words, it inverts a value. Perl considers any non-zero value to be true-even string
values. For example:

$firstVar = 10;

$secondVar = !$firstVar;

if ($secondVar == 0) {

 print("zero\n");

};

is equal to 0- and the program produces the following output:

zero

You could replace the 10 in the first line with "ten," 'ten,' or any non-zero, non-null value.

Bit operations

The following table lists the Bitwise operators supported by C. Assume variable 'A'
holds 60 and variable 'B' holds 13, then −

Operator Description Example

& Binary AND Operator copies a bit to the result if it exists in both
operands.

(A & B) =
12, i.e.,
0000
1100

| Binary OR Operator copies a bit if it exists in either operand. (A | B) =
61, i.e.,

128

0011
1101

^ Binary XOR Operator copies the bit if it is set in one operand but
not both.

(A ^ B) =
49, i.e.,
0011
0001

~
Binary One's Complement Operator is unary and has the effect
of 'flipping' bits.

(~A) =
~(60),
i.e,. 1100
0011

<< Binary Left Shift Operator. The left operands value is moved left
by the number of bits specified by the right operand.

A << 2 =
240 i.e.,
1111
0000

>> Binary Right Shift Operator. The left operands value is moved
right by the number of bits specified by the right operand.

A >> 2 =
15 i.e.,
0000
1111

Example

Try the following example to understand all the bitwise operators available in C –

#include <stdio.h>

main() {

 unsigned int a = 60; /* 60 = 0011 1100 */
 unsigned int b = 13; /* 13 = 0000 1101 */
 int c = 0;

 c = a & b; /* 12 = 0000 1100 */
 printf("Line 1 - Value of c is %d\n", c);

 c = a | b; /* 61 = 0011 1101 */

129

 printf("Line 2 - Value of c is %d\n", c);

 c = a ^ b; /* 49 = 0011 0001 */
 printf("Line 3 - Value of c is %d\n", c);

 c = ~a; /*-61 = 1100 0011 */
 printf("Line 4 - Value of c is %d\n", c);

 c = a << 2; /* 240 = 1111 0000 */
 printf("Line 5 - Value of c is %d\n", c);

 c = a >> 2; /* 15 = 0000 1111 */
 printf("Line 6 - Value of c is %d\n", c);
}

When you compile and execute the above program, it produces the following result −

Line 1 - Value of c is 12

Line 2 - Value of c is 61

Line 3 - Value of c is 49

Line 4 - Value of c is -61

Line 5 - Value of c is 240

Line 6 - Value of c is 15

Operator precedence and associativity

Operator precedence: It dictates the order of evaluation of operators in an expression.

Associativity: It defines the order in which operators of the same precedence are
evaluated in an expression. Associativity can be either from left to right or right to left.

Consider the following example:

24 + 5 * 4

Here we have two operators + and *, Which operation do you think will be evaluated
first, addition or multiplication? If the addition is applied first then answer will be 116 and
if the multiplication is applied first answer will be 44. To answer such question we need
to consult the operator precedence table.

130

In C, each operator has a fixed priority or precedence in relation to other operators. As a
result, the operator with higher precedence is evaluated before the operator with lower
precedence. Operators that appear in the same group have the same precedence. The
following table lists operator precedence and associativity.

Operators in the top have higher precedence and it decreases as we move towards the
bottom.

From the precedence table, we can conclude that the * operator is above
the + operator, so the * operator has higher precedence than the + operator, therefore
in the expression 24 + 5 * 4, subexpression 5 * 4 will be evaluated first.

131

Here are some more examples:

Example 1:

34 + 12/4 - 45

Here the / operator has higher precedence hence 12/4 is evaluated first. The
operators + and - have the same precedence because they are in the same group. So
which one of them will be evaluated first? To solve this problem you need to consult the

132

associativity of the operator. As you can see in the table, the operators + and - have the
same precedence and associates from left to right therefore in our expression 34 + 12/4
- 45 after division, addition (+) will be performed before subtraction (-).

Using Parentheses

If you look at the precedence table you will find that the precedence of parentheses (())
operator is the highest. Consequently, just as we did in school, we can use parentheses
to change the sequence of operations. Consider the following example:

3 + 4 * 2

Here, the * operator will be evaluated first followed by the + operator.

What if you want the addition to take place first followed by multiplication?

We can do this using parentheses, as follows:

(3 + 4) * 2

Whatever you have wrapped inside the parentheses will be evaluated first. As a result,
in this expression the addition will take place first followed by multiplication.

You can also nest parentheses like this:

(2 + (3 + 2)) * 10

In such cases expression inside the innermost parentheses is evaluated first, then the
next innermost parentheses and so on.

We can also use parentheses to make complex expressions a little more readable. For
example:

1
2

age < 18 && height < 48 || age > 60 && height > 72
(age < 18 && height < 48) || (age > 60 && height > 72) // much better than the above

Both expressions give the same result, but adding parentheses makes our intent much
clear.

We haven't yet discussed relational and logical operators. So the above expression
might not make perfect sense. Relational and Logical operators are discussed in detail
in Relational Operators in C and Logical Operators in C, respectively. In the next
chapter, we will learn about the if else statement in C.

https://overiq.com/c-programming-101/relational-operators-in-c/
https://overiq.com/c-programming-101/logical-operators-in-c/

133

UNIT III

Conditional Program Execution:

Applying if and switch statements

The switch case statement is used when we have multiple options and we need to
perform a different task for each option.

C – Switch Case Statement

Before we see how a switch case statement works in a C program, let‘s checkout the
syntax of it.

switch (variable or an integer expression)
{
 case constant:
 //C Statements
 ;
 case constant:
 //C Statements
 ;
 default:
 //C Statements
 ;
}

Flow Diagram of Switch Case

134

Example of Switch Case in C

Let‘s take a simple example to understand the working of a switch case statement in C
program.

#include <stdio.h>
int main()
{
 int num=2;
 switch(num+2)
 {
 case 1:
 printf("Case1: Value is: %d", num);
 case 2:
 printf("Case1: Value is: %d", num);
 case 3:
 printf("Case1: Value is: %d", num);
 default:
 printf("Default: Value is: %d", num);
 }
 return 0;
}

Output:

Default: value is: 2

Explanation:

In switch I gave an expression, you can give variable also. I gave num+2, where num
value is 2 and after addition the expression resulted 4. Since there is no case defined
with value 4 the default case is executed.

Twist in a story – Introducing Break statement

Before we discuss more about break statement, guess the output of this C program.

#include <stdio.h>
int main()
{
 int i=2;
 switch (i)

https://beginnersbook.com/2014/01/c-break-statement/

135

 {
 case 1:
 printf("Case1 ");
 case 2:
 printf("Case2 ");
 case 3:
 printf("Case3 ");
 case 4:
 printf("Case4 ");
 default:
 printf("Default ");
 }
 return 0;
}

Output:

Case2 Case3 Case4 Default
I passed a variable to switch, the value of the variable is 2 so the control jumped to the
case 2, However there are no such statements in the above program which could break
the flow after the execution of case 2. That‘s the reason after case 2, all the subsequent
cases and default statements got executed.

How to avoid this situation?

We can use break statement to break the flow of control after every case block.

Break statement in Switch Case

Break statements are useful when you want your program-flow to come out of the
switch body. Whenever a break statement is encountered in the switch body, the control
comes out of the switch case statement.

Example of Switch Case with break

I‘m taking the same above that we have seen above but this time we are using break.

#include <stdio.h>
int main()
{
 int i=2;
 switch (i)
 {

136

 case 1:
 printf("Case1 ");
 break;
 case 2:
 printf("Case2 ");
 break;
 case 3:
 printf("Case3 ");
 break;
 case 4:
 printf("Case4 ");
 break;
 default:
 printf("Default ");
 }
 return 0;
}

Output:

Case 2

Why didn‘t I use break statement after default?

The control would itself come out of the switch after default so I didn‘t use it, however if
you want to use the break after default then you can use it, there is no harm in doing
that.

Few Important points regarding Switch Case

1) Case doesn‘t always need to have order 1, 2, 3 and so on. They can have any
integer value after case keyword. Also, case doesn‘t need to be in an ascending order
always, you can specify them in any order as per the need of the program.

2) You can also use characters in switch case. for example –

#include <stdio.h>
int main()
{
 char ch='b';
 switch (ch)
 {
 case 'd':
 printf("CaseD ");
 break;

137

 case 'b':
 printf("CaseB");
 break;
 case 'c':
 printf("CaseC");
 break;
 case 'z':
 printf("CaseZ ");
 break;
 default:
 printf("Default ");
 }
 return 0;
}

Output:

CaseB

3) The expression provided in the switch should result in a constant value otherwise it
would not be valid.

For example:

Valid expressions for switch –

switch(1+2+23)
switch(1*2+3%4)

Invalid switch expressions –

switch(ab+cd)
switch(a+b+c)

4) Nesting of switch statements are allowed, which means you can have switch
statements inside another switch. However nested switch statements should be avoided
as it makes program more complex and less readable.
5) Duplicate case values are not allowed. For example, the following program is
incorrect:
This program is wrong because we have two case ‗A‘ here which is wrong as we
cannot have duplicate case values.

#include <stdio.h>
int main()
{

138

 char ch='B';
 switch (ch)
 {
 case 'A':
 printf("CaseA");
 break;
 case 'A':
 printf("CaseA");
 break;
 case 'B':
 printf("CaseB");
 break;
 case 'C':
 printf("CaseC ");
 break;
 default:
 printf("Default ");
 }
 return 0;
}

6) The default statement is optional, if you don‘t have a default in the program, it would
run just fine without any issues. However it is a good practice to have a default
statement so that the default executes if no case is matched. This is especially useful
when we are taking input from user for the case choices, since user can sometime enter
wrong value, we can remind the user with a proper error message that we can set in the
default statement.

nesting if and else

Conditional Statements in C programming are used to make decisions based on the
conditions. Conditional statements execute sequentially when there is no condition
around the statements. If you put some condition for a block of statements, the
execution flow may change based on the result evaluated by the condition. This process
is called decision making in 'C.'

In 'C' programming conditional statements are possible with the help of the following two
constructs:

1. If statement

2. If-else statement

139

It is also called as branching as a program decides which statement to execute based
on the result of the evaluated condition.

In this tutorial, you will learn-

 What is a Conditional Statement?
 If statement
 Relational Operators
 The If-Else statement
 Conditional Expressions
 Nested If-else Statements
 Nested Else-if statements

If statement

It is one of the powerful conditional statement. If statement is responsible for modifying
the flow of execution of a program. If statement is always used with a condition. The
condition is evaluated first before executing any statement inside the body of If. The
syntax for if statement is as follows:

if (condition)
 instruction;

The condition evaluates to either true or false. True is always a non-zero value, and
false is a value that contains zero. Instructions can be a single instruction or a code
block enclosed by curly braces { }.

Following program illustrates the use of if construct in 'C' programming:

#include<stdio.h>
int main()
{
 int num1=1;
 int num2=2;
 if(num1<num2) //test-condition
 {
 printf("num1 is smaller than num2");
 }
 return 0;
}

Output:

num1 is smaller than num2

The above program illustrates the use of if construct to check equality of two numbers.

https://www.guru99.com/c-if-else-statement.html#1
https://www.guru99.com/c-if-else-statement.html#2
https://www.guru99.com/c-if-else-statement.html#3
https://www.guru99.com/c-if-else-statement.html#4
https://www.guru99.com/c-if-else-statement.html#5
https://www.guru99.com/c-if-else-statement.html#6
https://www.guru99.com/c-if-else-statement.html#7

140

1. In the above program, we have initialized two variables with num1, num2 with
value as 1, 2 respectively.

2. Then, we have used if with a test-expression to check which number is the
smallest and which number is the largest. We have used a relational expression
in if construct. Since the value of num1 is smaller than num2, the condition will
evaluate to true.

3. Thus it will print the statement inside the block of If. After that, the control will go
outside of the block and program will be terminated with a successful result.

Relational Operators

C has six relational operators that can be used to formulate a Boolean expression for
making a decision and testing conditions, which returns true or false :

< less than

<= less than or equal to

> greater than

>= greater than or equal to

141

== equal to

!= not equal to

Notice that the equal test (==) is different from the assignment operator (=) because it is
one of the most common problems that a programmer faces by mixing them up.

For example:

int x = 41;
x =x+ 1;
if (x == 42) {
 printf("You succeed!");}

Output :

 You succeed

Keep in mind that a condition that evaluates to a non-zero value is considered as true.

For example:

int present = 1;
if (present)
 printf("There is someone present in the classroom \n");

Output :

There is someone present in the classroom

The If-Else statement

142

The if-else is statement is an extended version of If. The general form of if-else is as
follows:

if (test-expression)
{
 True block of statements
}
Else
{
 False block of statements
}
Statements;

n this type of a construct, if the value of test-expression is true, then the true block of
statements will be executed. If the value of test-expression if false, then the false block
of statements will be executed. In any case, after the execution, the control will be
automatically transferred to the statements appearing outside the block of If.

Following programs illustrate the use of the if-else construct:

We will initialize a variable with some value and write a program to determine if the
value is less than ten or greater than ten.

Let's start.

#include<stdio.h>
int main()
{
 int num=19;
 if(num<10)
 {
 printf("The value is less than 10");
 }
 else
 {
 printf("The value is greater than 10");
 }
 return 0;
}

Output:

The value is greater than 10

143

1. We have initialized a variable with value 19. We have to find out whether the
number is bigger or smaller than 10 using a 'C' program. To do this, we have
used the if-else construct.

2. Here we have provided a condition num<10 because we have to compare our
value with 10.

3. As you can see the first block is always a true block which means, if the value of
test-expression is true then the first block which is If, will be executed.

4. The second block is an else block. This block contains the statements which will
be executed if the value of the test-expression becomes false. In our program,
the value of num is greater than ten hence the test-condition becomes false and
else block is executed. Thus, our output will be from an else block which is "The
value is greater than 10". After the if-else, the program will terminate with a
successful result.

In 'C' programming we can use multiple if-else constructs within each other which are
referred to as nesting of if-else statements.

144

Conditional Expressions

There is another way to express an if-else statement is by introducing the ?: operator.
In a conditional expression the ?: operator has only one statement associated with the if
and the else.

For example:

#include <stdio.h>
int main() {
 int y;
 int x = 2;
 y = (x >= 6) ? 6 : x;/* This is equivalent to: if (x >= 5) y = 5; else y = x; */
 printf("y =%d ",y);
 return 0;}

Output :

y =2

Nested If-else Statements

When a series of decision is required, nested if-else is used. Nesting means using one
if-else construct within another one.

Let's write a program to illustrate the use of nested if-else.

#include<stdio.h>
int main()
{
 int num=1;
 if(num<10)
 {
 if(num==1)
 {
 printf("The value is:%d\n",num);
 }
 else
 {
 printf("The value is greater than 1");
 }
 }
 else
 {
 printf("The value is greater than 10");
 }

145

 return 0;
}

Output:

The value is:1

The above program checks if a number is less or greater than 10 and prints the result
using nested if-else construct.

1. Firstly, we have declared a variable num with value as 1. Then we have used if-
else construct.

2. In the outer if-else, the condition provided checks if a number is less than 10. If
the condition is true then and only then it will execute the inner loop. In this case,
the condition is true hence the inner block is processed.

146

3. In the inner block, we again have a condition that checks if our variable contains
the value 1 or not. When a condition is true, then it will process the If block
otherwise it will process an else block. In this case, the condition is true hence
the If a block is executed and the value is printed on the output screen.

4. The above program will print the value of a variable and exit with success.

Try changing the value of variable see how the program behaves.

NOTE: In nested if-else, we have to be careful with the indentation because multiple if-
else constructs are involved in this process, so it becomes difficult to figure out
individual constructs. Proper indentation makes it easy to read the program.

Nested Else-if statements

Nested else-if is used when multipath decisions are required.

The general syntax of how else-if ladders are constructed in 'C' programming is as
follows:

 if (test - expression 1) {

 statement1;

} else if (test - expression 2) {

 Statement2;

} else if (test - expression 3) {

 Statement3;

} else if (test - expression n) {

 Statement n;

} else {

 default;

}

Statement x;

This type of structure is known as the else-if ladder. This chain generally looks like a
ladder hence it is also called as an else-if ladder. The test-expressions are evaluated
from top to bottom. Whenever a true test-expression if found, statement associated with
it is executed. When all the n test-expressions becomes false, then the default else
statement is executed.

Let us see the actual working with the help of a program.

#include<stdio.h>

int main()

{

 int marks=83;

 if(marks>75){

147

 printf("First class");

 }

 else if(marks>65){

 printf("Second class");

 }

 else if(marks>55){

 printf("Third class");

 }

 else{

 printf("Fourth class");

 }

 return 0;

}

Output:

First class

The above program prints the grade as per the marks scored in a test. We have used
the else-if ladder construct in the above program.

148

1. We have initialized a variable with marks. In the else-if ladder structure, we have
provided various conditions.

2. The value from the variable marks will be compared with the first condition since
it is true the statement associated with it will be printed on the output screen.

3. If the first test condition turns out false, then it is compared with the second
condition.

4. This process will go on until the all expression is evaluated otherwise control will
go out of the else-if ladder, and default statement will be printed.

Try modifying the value and notice the change in the output.

Summary

 Decision making or branching statements are used to select one path based on
the result of the evaluated expression.

 It is also called as control statements because it controls the flow of execution of
a program.

 'C' provides if, if-else constructs for decision-making statements.

 We can also nest if-else within one another when multiple paths have to be
tested.

 The else-if ladder is used when we have to check various ways based upon the
result of the expression.

restrictions on switch values

In this tutorial, we will discuss what are Java switch statements, how to use them, the
allowed data types that can be used in the switch statements and the advantages and
restrictions that apply to them.

Contents hide

1 What is a ―switch‖ statement
2 How to use a switch statement
3 How does the ―break‖ keyword work
4 The ―default‖ case
5 Advantages of using a switch statement over a traditional if-else cascade
6 Restrictions on switch statements
6.1 Accepted data types to the switch statement input
6.2 Configuration restrictions to the switch cases
7 Summary
8 Related Posts

https://nullbeans.com/java-switch-statements-uses-advantages-and-restrictions/
https://nullbeans.com/java-switch-statements-uses-advantages-and-restrictions/#What_is_a_switch_statement
https://nullbeans.com/java-switch-statements-uses-advantages-and-restrictions/#How_to_use_a_switch_statement
https://nullbeans.com/java-switch-statements-uses-advantages-and-restrictions/#How_does_the_break_keyword_work
https://nullbeans.com/java-switch-statements-uses-advantages-and-restrictions/#The_default_case
https://nullbeans.com/java-switch-statements-uses-advantages-and-restrictions/#Advantages_of_using_a_switch_statement_over_a_traditional_if-else_cascade
https://nullbeans.com/java-switch-statements-uses-advantages-and-restrictions/#Restrictions_on_switch_statements
https://nullbeans.com/java-switch-statements-uses-advantages-and-restrictions/#Accepted_data_types_to_the_switch_statement_input
https://nullbeans.com/java-switch-statements-uses-advantages-and-restrictions/#Configuration_restrictions_to_the_switch_cases
https://nullbeans.com/java-switch-statements-uses-advantages-and-restrictions/#Summary
https://nullbeans.com/java-switch-statements-uses-advantages-and-restrictions/#Related_Posts

149

What is a ―switch‖ statement

A ―switch‖ statement in Java is a conditional operator used to direct the
execution of an algorithm to a specific code path. Inside a switch statement,
multiple execution paths are defined. The path that is taken will depend upon an input
value provided to the switch statement.

An analogy can be drawn from the good old days with a telephone switch board. A
person calls the switch board staff and asks to be routed to a specific number, and the
operator on the switch board will connect your call to a specific routing port, depending
on the number you as for.

How to use a switch statement

The following is an example of a switch statement. The switch statement is fed the
character value ―grade‖, and one of the paths will be executed depending on the value
of grade.

package com.nullbeans;

public class Main {

 public static void main(String[] args) {

 char grade = 'B';

 switch (grade){
 case 'Á': System.out.println("Excellent!"); break;
 case 'B': System.out.println("Very good!"); break;
 case 'C': System.out.println("Average!"); break;
 case 'D': System.out.println("Poor!"); break;
 case 'E': System.out.println("Very poor!"); break;
 case 'F': System.out.println("Failed"); break;
 }

 }
}

When running this program, we will get the following output.

Very good!

Process finished with exit code

150

Let us go over some keywords in that example:

switch: This signifies the start of a switch statement. The switch statement takes a
single input value to be evaluated.

case: The ―case‖ keyword‖ signifies an entry point for execution. Each case is defined
for a specific value. The entry point can be entered if the input value to the switch
statement matches the one in the case. As you can see in our example, since we used
the value ―B‖, we started the execution from the ―case B‖ part of the switch statement.

break: The ―break‖ keyword signals the program to exit the switch statement. It is not
mandatory to have the break keyword in each case. However, if it is missing, the
program will not exit the switch statement and will continue executing until either a
break statement is found, or we exit the program. Let us discuss this in more details in
the next section.

How does the ―break‖ keyword work

The break keyword is a java keyword that allows the execution to exit from its current
conditional scope. For example, if it is inside a ―while‖ loop, the program will skip the
execution of the loop and will exit the loop‘s scope. Similarly, if the break keyword is
encountered inside a switch statement, it will prompt Java to exit the while switch
statement.

Take for example the following diagram. Since the code of every case is followed by a
―break‖, only that code will be executed.

This diagram illustrates a switch statement with a break after each case. Since there is
a break after each case, only the code related to the single matching case is executed.
(Click to enlarge)

In our previous program, only one statement was executed, since after each case, a
break keyword was present. So what if we did not have a break keyword? Then the
program will continue execution until either a break statement is encountered or the end
of the switch statement is reached.

This diagram illustrates a switch statement where case 1 and case 3 do not have the
break keywords. Using this setup, if X is equal to 1, then the code from case 1 and 2 is
executed. The program stops at case 2 because there is a break keyword there. If X is
equal to 2, then only the code from case 2 is executed. If X is equal to 3, then the code
from case 3 is executed and the switch statement is terminated. (Click to enlarge)

151

Let us discuss the next example. The following program is used to print out the features
a customer would get when they choose a hosting plan from our imaginary web hosting
provider. We can describe the plans as follows:

 Our plans start with a ―Basic‖ package with 2 free domain names.
 Then there is a ―Basic plus‖ plan, which includes whatever is in the ―Basic‖ plan

plus unlimited bandwidth.
 Then comes the ―Premium‖ plan which includes whatever is in ―Basic plus‖ and

―Basic‖, plus an extra 1GB of RAM.
 And finally, there comes the ―Premium plus‖ plan. The plan includes whatever is

in the ―Premium‖, the ―Basic plus‖ and the ―Basic‖, plus an extra 1 CPU.

Now, let us model this program in Java using a switch statement. Since we can ristrict
the entry point using the ―case‖ keyword, we can write our program in a way that
includes all the correct features by simply defining the switch case order from the most
inclusive case to the least inclusive.

 String hostingPlan = "Premium";

 System.out.println("Your hosting plan includes:");

 switch(hostingPlan){

 case "Premium plus": System.out.println("- Extra 1 CPU");
 case "Premium": System.out.println("- Extra 1GB RAM");
 case "Basic plus": System.out.println("- Unlimited bandwidth");
 case "Basic": System.out.println("- 2 Domain names");
 }

Let us run our program and check the results.

Your hosting plan includes:
- Extra 1GB RAM
- Unlimited bandwidth
- 2 Domain names

Process finished with exit code 0

Notice here that the println statement of the ―Premium plus‖ case was not executed as
the program did not enter the switch statement in this case. The program entered from
the ―Premium‖ case. Notice also that, even though the input value ―Premium‖ did not
match the ―Basic plus‖ and ―Basic‖ cases, the statements from these cases were

152

executed anyway. This is because the break statement was missing. Therefore,
nothing stopped the execution of the rest of the switch statement cases.

The ―default‖ case

What if the input to the switch statement did not match any of the cases? Then non of
the statements would be executed. What if we wanted to print out an error, to tell the
user that they inserted an unrecognized value? The default case comes to the rescue.

The default case is a a switch statement case which is executed if non of the
other switch cases matches the switch statement input. Let us modify our previous
example to include a default case.

 String hostingPlan = "Super premium";

 System.out.println("Your hosting plan includes:");

 switch(hostingPlan){

 case "Premium plus": System.out.println("- Extra 1 CPU");
 case "Premium": System.out.println("- Extra 1GB RAM");
 case "Basic plus": System.out.println("- Unlimited bandwidth");
 case "Basic": System.out.println("- 2 Domain names"); break;
 default: System.out.println("Hosting plan not recognized");

 }

Notice that we added the ―break‖ keyword after the ―Basic‖ case in order to stop the
execution of the switch statement if one of the cases match. Now let us run the
program.

Your hosting plan includes:
Hosting plan not recognized

Process finished with exit code 0

Since non of the switch cases matches the input ―Super premium‖, the default case was
executed, Please note that the default case does not need to be the last case in the
switch statement. It can be added at the beginning or in the middle of the cases. It will
behave just like any other entry point. But in the ―default‖ case, it is entered only when
no other case is matched.

153

Advantages of using a switch statement over a traditional if-else cascade

While it is true that the same functionalities of the switch statement can also be
implemented using an if-else cascade, the switch statement allows us in certain
situations to write a more clear, compact and readable code.

For example, if we wanted to convert our previous example to an if-else cascade, it
would look as follows.

 String hostingPlan = "Premium";

 System.out.println("Your hosting plan includes:");

 if(hostingPlan.equals("Premium plus")){
 System.out.println("- Extra 1 CPU");
 System.out.println("- Extra 1GB RAM");
 System.out.println("- Unlimited bandwidth");
 System.out.println("- 2 Domain names");
 }else if(hostingPlan.equals("Premium")){
 System.out.println("- Extra 1GB RAM");
 System.out.println("- Unlimited bandwidth");
 System.out.println("- 2 Domain names");
 }else if(hostingPlan.equals("Basic plus")){
 System.out.println("- Unlimited bandwidth");
 System.out.println("- 2 Domain names");
 }else if(hostingPlan.equals("Basic")){
 System.out.println("- 2 Domain names");
 }else {
 System.out.println("Hosting plan not recognized");
 }

 }

Notice that we have to perform a lot of code repetition. This is not ideal as if we need to
change something, we would have to change it in other places as well. This is error
prone and time consuming. For example, if we decide to provide 3 domain names
instead of 2, then we will have to update the if-then part of each if statement.

Restrictions on switch statements

While switch statements can be very efficient and cleaner, they also have certain
restrictions. Let us go through these restrictions one by one.

154

Accepted data types to the switch statement input

The switch statement will accept the following data types as input:

 byte
 short
 int
 long
 char
 String (only Java version 7 and above)
 Byte
 Short
 Integer
 Long
 Enum

Unlike if statements and the conditional operator, floating point numbers and other
Objects are not allowed to be used inside a switch statement.

Configuration restrictions to the switch cases

Another restriction that comes to switch statements are the values provided to the case
configurations. Each case should be configured with either a constant value or a
final value variable. Otherwise, the program will not compile.

The following example is allowed in Java.

 switch (x){

 case 32: //bla bla code here
 //.....

 }

And this is also allowed

 final int y = 32;

 switch (x){

 case y: //bla bla code here

155

 //.....

 }

However, if we remove the final keyword as in the example below, we will get an error
that a ―constant expression is required‖.

 //program does not compile
 int y = 32;

 switch (x){

 case y: //bla bla code here
 //.....

 }

Another restriction is that while switch statement inputs can be an Object such as
Integer, Byte, etc (as mentioned in the previous section), switch cases are more
restrictive and allow only primitive data types (int, short, byte, long, char), String
and enums.

Summary

In this post, we discussed how to use a Java switch statement. We discussed what is
the break keyword and how to use it. We also discussed the default keyword and its
purpose. We also discussed some of the advantages of using a switch statement over a
traditional if-then-else cascade. Finally, we discussed what are the restriction that apply
to switch statement inputs and case configurations.

use of break and default with switch

In the last topic, we studied different types of loops. We also saw how loops can be
nested.

Normally, if we have to choose one case among many choices, if-else is used. But if the
number of choices is large, switch..case makes it a bit easier and less complex.

Let's control Case Wise

156

switch...case is another way to control and decide the execution of statements other
than if/else. This is used when we are given a number of choices (cases) and we want
to perform a different task for each choice.

Let's first have a look at its syntax.

switch(expression)
{
 case constant1:
 statement(s);
 break;
 case constant2:
 statement(s);
 break;
 /* you can give any number of cases */
 default:
 statement(s);
}

In switch...case, the value of expression enclosed within the brackets () following
switch is checked. If the value of the expression matches the value of constant in any of
the case, the statement(s) corresponding to that case are executed.

If expression does not match any of the constant values, then the statements
corresponding to default are executed.

Let's see an example.

#include <stdio.h>

int main()

{

 char grade ;

 printf("Enter your grade\n");

 scanf(" %c" , &grade);

 switch(grade)

 {

 case 'A':

 printf("Excellent!\n");

 break;

 case 'B':

 printf("Outstanding!\n");

157

 break;

 case 'C':

 printf("Good!\n");

 break;

 case 'D':

 printf("Can do better\n");

 break;

 case 'E':

 printf("Just passed\n");

 break;

 case 'F':

 printf("You failed\n");

 break;

 default:

 printf("Invalid grade\n");

 }

 return 0;

}

Output

break is used to break or terminate a loop whenever we want and is also used

with switch.

In this example, the value of 'grade' is 'D'. Since the value of the constants of the first

three cases is not 'D', so case 'D' will be executed and 'Can do better' will be printed.

Then break statement will terminate the execution without checking the rest of the

cases.

If there is no break in any statement, then after execution of the correct case, every

case will also be executed. Look at the following code for an example.

#include <stdio.h>

int main()

{

158

 char grade ;

 printf("Enter your grade\n");

 scanf(" %c" , &grade);

 switch(grade)

 {

 case'A':

 printf("Excellent!\n");

 case 'B':

 printf("Outstanding!\n");

 case 'C':

 printf("Good!\n");

 case 'D':

 printf("Can do better\n");

 case 'E':

 printf("Just passed\n");

 case 'F':

 printf("You failed\n");

 default:

 printf("Invalid grade\n");

 }

 return 0;

}

Output

159

In the above example, value of grade is 'D', so the control jumped to case 'D'. Since
there is no break statement after any case, so all the statements after case 'D' also get
executed.

As you can see, all the cases after case D have been executed.

If you want to execute only that case whose constant value equals the value of
expression of the switch statement, then use the break statement.

Always enclose the character values within ' '.

Now let's see an example with the expression value as an integer.

#include <stdio.h>

int main()

{

 int i = 2;

 switch(i)

 {

 case 1:

 printf("Number is 1\n");

 break;

 case 2:

 printf("Number is 2\n");

 break;

 default:

 printf("Number is greater than 2\n");

 }

 return 0;

}

Output

Using break with loops

160

We can also terminate a loop in the middle of its execution using break. Just
type break; after the statement after which you want to break the loop. As simple as
that!

Let's consider an example.

#include <stdio.h>

int main()

{

 int a;

 for(a = 1; a <= 10; a ++)

 {

 printf("Hello World\n");

 if(a == 2)

 {

 //loop will now stop

 break;

 }

 }

 return 0;

}

Output

In this example, after the first iteration of the loop, a++ increases the value of 'a' to 2
and 'Hello World' got printed. Since the condition of if satisfies this time, break will be
executed and the loop will terminate.

Continue

The continue statement works similar to break statement. The only difference is
that break statement terminates the loop whereas continue statement passes control to
the conditional test i.e., where the condition is checked, skipping the rest of the
statements of the loop.

#include <stdio.h>

int main()

161

{

 int a ;

 for(a = 1; a <= 10; a ++)

 {

 printf("Hello World\n");

 if (a == 2)

 {

 //this time further statements will not be executed. Control will go to for

 continue;

 }

 printf("a is not 2\n");

 }

 return 0;

}

Output

Notice that at the second time, 'a is not 2' is not printed. It means that when 'a' was 2,
then 'continue' got executed and control went to for loop without executing further
codes.

Program Loops and Iteration:

Uses of while

A Loop executes the sequence of statements many times until the stated condition

becomes false. A loop consists of two parts, a body of a loop and a control statement.

The control statement is a combination of some conditions that direct the body of the

loop to execute until the specified condition becomes false. The purpose of the loop is

to repeat the same code a number of times.

In this tutorial, you will learn-

 Types of Loops in C
 While Loop in C
 Do-While loop in C

https://www.guru99.com/c-loop-statement.html#2
https://www.guru99.com/c-loop-statement.html#3
https://www.guru99.com/c-loop-statement.html#4

162

 For loop in C
 Break Statement in C
 Continue Statement in C
 Which loop to Select?

Types of Loops in C

Depending upon the position of a control statement in a program, looping in C is
classified into two types:

1. Entry controlled loop

2. Exit controlled loop

In an entry controlled loop, a condition is checked before executing the body of a
loop. It is also called as a pre-checking loop.

In an exit controlled loop, a condition is checked after executing the body of a loop. It
is also called as a post-checking loop.

Sample Loop

https://www.guru99.com/c-loop-statement.html#5
https://www.guru99.com/c-loop-statement.html#6
https://www.guru99.com/c-loop-statement.html#7
https://www.guru99.com/c-loop-statement.html#8

163

The control conditions must be well defined and specified otherwise the loop will
execute an infinite number of times. The loop that does not stop executing and
processes the statements number of times is called as an infinite loop. An infinite loop
is also called as an "Endless loop." Following are some characteristics of an infinite
loop:

1. No termination condition is specified.

2. The specified conditions never meet.

The specified condition determines whether to execute the loop body or not.

'C' programming language provides us with three types of loop constructs:

1. The while loop

2. The do-while loop

3. The for loop

While Loop in C

A while loop is the most straightforward looping structure. Syntax of while loop in C
programming language is as follows:

while (condition) {

 statements;

}

It is an entry-controlled loop. In while loop, a condition is evaluated before processing a
body of the loop. If a condition is true then and only then the body of a loop is executed.
After the body of a loop is executed then control again goes back at the beginning, and
the condition is checked if it is true, the same process is executed until the condition
becomes false. Once the condition becomes false, the control goes out of the loop.

After exiting the loop, the control goes to the statements which are immediately after the
loop. The body of a loop can contain more than one statement. If it contains only one
statement, then the curly braces are not compulsory. It is a good practice though to use
the curly braces even we have a single statement in the body.

In while loop, if the condition is not true, then the body of a loop will not be executed, not
even once. It is different in do while loop which we will see shortly.

Following program illustrates while loop in C programming example:

#include<stdio.h>

164

#include<conio.h>

int main()

{

 int num=1; //initializing the variable

 while(num<=10) //while loop with condition

 {

 printf("%d\n",num);

 num++; //incrementing operation

 }

 return 0;

}

Output:

1

2

3

4

5

6

7

8

9

10

The above program illustrates the use of while loop. In the above program, we have
printed series of numbers from 1 to 10 using a while loop.

165

1. We have initialized a variable called num with value 1. We are going to print from
1 to 10 hence the variable is initialized with value 1. If you want to print from 0,
then assign the value 0 during initialization.

2. In a while loop, we have provided a condition (num<=10), which means the loop
will execute the body until the value of num becomes 10. After that, the loop will
be terminated, and control will fall outside the loop.

3. In the body of a loop, we have a print function to print our number and an
increment operation to increment the value per execution of a loop. An initial
value of num is 1, after the execution, it will become 2, and during the next
execution, it will become 3. This process will continue until the value becomes 10
and then it will print the series on console and terminate the loop.

\n is used for formatting purposes which means the value will be printed on a new line.

Do-While loop in C

A do...while loop in C is similar to the while loop except that the condition is always
executed after the body of a loop. It is also called an exit-controlled loop.

Syntax of do...while loop in C programming language is as follows:

 do {

 statements

} while (expression);

As we saw in a while loop, the body is executed if and only if the condition is true. In
some cases, we have to execute a body of the loop at least once even if the condition is
false. This type of operation can be achieved by using a do-while loop.

In the do-while loop, the body of a loop is always executed at least once. After the body
is executed, then it checks the condition. If the condition is true, then it will again
execute the body of a loop otherwise control is transferred out of the loop.

Similar to the while loop, once the control goes out of the loop the statements which are
immediately after the loop is executed.

The critical difference between the while and do-while loop is that in while loop the while
is written at the beginning. In do-while loop, the while condition is written at the end and
terminates with a semi-colon (;)

The following loop program in C illustrates the working of a do-while loop:

Below is a do-while loop in C example to print a table of number 2:

#include<stdio.h>

#include<conio.h>

166

int main()

{

 int num=1; //initializing the variable

 do //do-while loop

 {

 printf("%d\n",2*num);

 num++; //incrementing operation

 }while(num<=10);

 return 0;

}

Output:

2

4

6

8

10

12

14

16

18

20

In the above example, we have printed multiplication table of 2 using a do-while loop.
Let's see how the program was able to print the series.

167

1. First, we have initialized a variable 'num' with value 1. Then we have written a
do-while loop.

2. In a loop, we have a print function that will print the series by multiplying the
value of num with 2.

3. After each increment, the value of num will increase by 1, and it will be printed on
the screen.

4. Initially, the value of num is 1. In a body of a loop, the print function will be
executed in this way: 2*num where num=1, then 2*1=2 hence the value two will
be printed. This will go on until the value of num becomes 10. After that loop will
be terminated and a statement which is immediately after the loop will be
executed. In this case return 0.

For loop in C

A for loop is a more efficient loop structure in 'C' programming. The general structure of
for loop syntax in C is as follows:

for (initial value; condition; incrementation or decrementation)

{

 statements;

}

 The initial value of the for loop is performed only once.
 The condition is a Boolean expression that tests and compares the counter to a

fixed value after each iteration, stopping the for loop when false is returned.
 The incrementation/decrementation increases (or decreases) the counter by a

set value.

Following program illustrates the for loop in C programming example:

#include<stdio.h>

int main()

{

 int number;

 for(number=1;number<=10;number++) //for loop to print 1-10 numbers

 {

 printf("%d\n",number); //to print the number

 }

 return 0;

}

Output:

168

1

2

3

4

5

6

7

8

9

10

The above program prints the number series from 1-10 using for loop.

1. We have declared a variable of an int data type to store values.

2. In for loop, in the initialization part, we have assigned value 1 to the variable
number. In the condition part, we have specified our condition and then the
increment part.

3. In the body of a loop, we have a print function to print the numbers on a new line
in the console. We have the value one stored in number, after the first iteration
the value will be incremented, and it will become 2. Now the variable number has
the value 2. The condition will be rechecked and since the condition is true loop
will be executed, and it will print two on the screen. This loop will keep on

169

executing until the value of the variable becomes 10. After that, the loop will be
terminated, and a series of 1-10 will be printed on the screen.

In C, the for loop can have multiple expressions separated by commas in each part.

For example:

for (x = 0, y = num; x < y; i++, y--) {

 statements;

}

Also, we can skip the initial value expression, condition and/or increment by adding a
semicolon.

For example:

int i=0;

int max = 10;

for (; i < max; i++) {

 printf("%d\n", i);

}

Notice that loops can also be nested where there is an outer loop and an inner loop. For
each iteration of the outer loop, the inner loop repeats its entire cycle.

Consider the following example, that uses nested for loop in C programming to output a
multiplication table:

#include <stdio.h>

int main() {

int i, j;

int table = 2;

int max = 5;

for (i = 1; i <= table; i++) { // outer loop

 for (j = 0; j <= max; j++) { // inner loop

 printf("%d x %d = %d\n", i, j, i*j);

 }

 printf("\n"); /* blank line between tables */

}}

Output:

1 x 0 = 0

1 x 1 = 1

170

1 x 2 = 2

1 x 3 = 3

1 x 4 = 4

1 x 5 = 5

2 x 0 = 0

2 x 1 = 2

2 x 2 = 4

2 x 3 = 6

2 x 4 = 8

2 x 5 = 10

The nesting of for loops can be done up-to any level. The nested loops should be
adequately indented to make code readable. In some versions of 'C,' the nesting is
limited up to 15 loops, but some provide more.

The nested loops are mostly used in array applications which we will see in further
tutorials.

Break Statement in C

The break statement is used mainly in in the switch statement. It is also useful for
immediately stopping a loop.

We consider the following program which introduces a break to exit a while loop:

#include <stdio.h>

int main() {

int num = 5;

while (num > 0) {

 if (num == 3)

 break;

 printf("%d\n", num);

 num--;

}}

Output:

5

4

171

Continue Statement in C

When you want to skip to the next iteration but remain in the loop, you should use the
continue statement.

For example:

#include <stdio.h>

int main() {

int nb = 7;

while (nb > 0) {

 nb--;

 if (nb == 5)

 continue;

 printf("%d\n", nb);

}}

Output:

6

4

3

2

1

So, the value 5 is skipped.

Which loop to Select?

Selection of a loop is always a tough task for a programmer, to select a loop do the
following steps:

 Analyze the problem and check whether it requires a pre-test or a post-test loop.

 If pre-test is required, use a while or for a loop.

 If post-test is required, use a do-while loop.

Summary

 Looping is one of the key concepts on any programming language.

172

 A block of looping statements in C are executed for number of times until the
condition becomes false.

 Loops are of 2 types: entry-controlled and exit-controlled.

 'C' programming provides us 1) while 2) do-while and 3) for loop.

 For and while loop is entry-controlled loops.

 Do-while is an exit-controlled loop.

do and for loops

In this tutorial, you will learn to create while and do...while loop in C programming with

the help of examples.

In programming, loops are used to repeat a block of code until a specified condition is

met.

C programming has three types of loops.

1. for loop

2. while loop

3. do...while loop

In the previous tutorial, we learned about for loop. In this tutorial, we will learn

about while and do..while loop.

while loop

The syntax of the while loop is:

while (testExpression)

{

 // statements inside the body of the loop

}

173

How while loop works?

 The while loop evaluates the test expression inside the parenthesis ().

 If the test expression is true, statements inside the body of while loop are executed.

Then, the test expression is evaluated again.

 The process goes on until the test expression is evaluated to false.

 If the test expression is false, the loop terminates (ends).

To learn more about test expression (when the test expression is evaluated to true and

false), check out relational and logical operators.

Flowchart of while loop

Example 1: while loop

https://www.programiz.com/c-programming/c-operators#relational
https://www.programiz.com/c-programming/c-operators#logical

174

// Print numbers from 1 to 5

#include <stdio.h>

int main()

{

 int i = 1;

 while (i <= 5)

 {

 printf("%d\n", i);

 ++i;

 }

 return 0;

}

Output

1

2

3

4

5

Here, we have initialized i to 1.

1. When i is 1, the test expression i <= 5 is true. Hence, the body of the while loop is

executed. This prints 1 on the screen and the value of i is increased to 2.

2. Now, i is 2, the test expression i <= 5 is again true. The body of the while loop is

executed again. This prints 2 on the screen and the value of i is increased to 3.

3. This process goes on until i becomes 6. When i is 6, the test expression i <= 5 will be

false and the loop terminates.

do...while loop

The do..while loop is similar to the while loop with one important difference. The body

of do...while loop is executed at least once. Only then, the test expression is evaluated.

The syntax of the do...while loop is:

do

175

{

 // statements inside the body of the loop

}

while (testExpression);

How do...while loop works?

 The body of do...while loop is executed once. Only then, the test expression is

evaluated.

 If the test expression is true, the body of the loop is executed again and the test

expression is evaluated.

 This process goes on until the test expression becomes false.

 If the test expression is false, the loop ends.

Flowchart of do...while Loop

Example 2: do...while loop

// Program to add numbers until the user enters zero

176

#include <stdio.h>

int main()

{

 double number, sum = 0;

 // the body of the loop is executed at least once

 do

 {

 printf("Enter a number: ");

 scanf("%lf", &number);

 sum += number;

 }

 while(number != 0.0);

 printf("Sum = %.2lf",sum);

 return 0;

}

Output

Enter a number: 1.5

Enter a number: 2.4

Enter a number: -3.4

Enter a number: 4.2

Enter a number: 0

Sum = 4.70

multiple loop variables

C programming allows to use one loop inside another loop. The following section shows
a few examples to illustrate the concept.

Syntax

The syntax for a nested for loop statement in C is as follows −

177

for (init; condition; increment) {

 for (init; condition; increment) {
 statement(s);
 }
 statement(s);
}
The syntax for a nested while loop statement in C programming language is as follows
−

while(condition) {

 while(condition) {
 statement(s);
 }
 statement(s);
}
The syntax for a nested do…while loop statement in C programming language is as
follows −

do {
 statement(s);

 do {
 statement(s);
 }while(condition);

}while(condition);
A final note on loop nesting is that you can put any type of loop inside any other type of
loop. For example, a ‗for‘ loop can be inside a ‗while‘ loop or vice versa.

Example

The following program uses a nested for loop to find the prime numbers from 2 to 100
− Live Demo

#include <stdio.h>

int main () {

 /* local variable definition */
 int i, j;

 for(i = 2; i<100; i++) {

 for(j = 2; j <= (i/j); j++)

http://tpcg.io/GQGXBh

178

 if(!(i%j)) break; // if factor found, not prime
 if(j > (i/j)) printf("%d is prime\n", i);
 }

 return 0;
}
When the above code is compiled and executed, it produces the following result −

2 is prime
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime

assignment operators

The following table lists the assignment operators supported by the C language −

Operator Description Example

= Simple assignment operator. Assigns values from right side C = A + B
will assign
the value

179

operands to left side operand of A + B
to C

+= Add AND assignment operator. It adds the right operand to the
left operand and assign the result to the left operand.

C += A is
equivalent
to C = C +
A

-= Subtract AND assignment operator. It subtracts the right
operand from the left operand and assigns the result to the left
operand.

C -= A is
equivalent
to C = C -
A

*= Multiply AND assignment operator. It multiplies the right
operand with the left operand and assigns the result to the left
operand.

C *= A is
equivalent
to C = C *
A

/= Divide AND assignment operator. It divides the left operand
with the right operand and assigns the result to the left
operand.

C /= A is
equivalent
to C = C /
A

%= Modulus AND assignment operator. It takes modulus using two
operands and assigns the result to the left operand.

C %= A is
equivalent
to C = C
% A

<<= Left shift AND assignment operator. C <<= 2
is same
as C = C
<< 2

>>= Right shift AND assignment operator. C >>= 2
is same
as C = C
>> 2

180

&= Bitwise AND assignment operator. C &= 2 is
same as
C = C & 2

^= Bitwise exclusive OR and assignment operator. C ^= 2 is
same as
C = C ^ 2

|= Bitwise inclusive OR and assignment operator. C |= 2 is
same as
C = C | 2

Example

Try the following example to understand all the assignment operators available in C –

#include <stdio.h>

main() {

 int a = 21;
 int c ;

 c = a;
 printf("Line 1 - = Operator Example, Value of c = %d\n", c);

 c += a;
 printf("Line 2 - += Operator Example, Value of c = %d\n", c);

 c -= a;
 printf("Line 3 - -= Operator Example, Value of c = %d\n", c);

 c *= a;
 printf("Line 4 - *= Operator Example, Value of c = %d\n", c);

 c /= a;
 printf("Line 5 - /= Operator Example, Value of c = %d\n", c);

 c = 200;
 c %= a;

181

 printf("Line 6 - %= Operator Example, Value of c = %d\n", c);

 c <<= 2;
 printf("Line 7 - <<= Operator Example, Value of c = %d\n", c);

 c >>= 2;
 printf("Line 8 - >>= Operator Example, Value of c = %d\n", c);

 c &= 2;
 printf("Line 9 - &= Operator Example, Value of c = %d\n", c);

 c ^= 2;
 printf("Line 10 - ^= Operator Example, Value of c = %d\n", c);

 c |= 2;
 printf("Line 11 - |= Operator Example, Value of c = %d\n", c);
}

When you compile and execute the above program, it produces the following result −

Line 1 - = Operator Example, Value of c = 21
Line 2 - += Operator Example, Value of c = 42
Line 3 - -= Operator Example, Value of c = 21
Line 4 - *= Operator Example, Value of c = 441
Line 5 - /= Operator Example, Value of c = 21
Line 6 - %= Operator Example, Value of c = 11
Line 7 - <<= Operator Example, Value of c = 44
Line 8 - >>= Operator Example, Value of c = 11
Line 9 - &= Operator Example, Value of c = 2
Line 10 - ^= Operator Example, Value of c = 0
Line 11 - |= Operator Example, Value of c = 2

using break and continue

In this tutorial, you will learn about c programming break continue
statements. Break and continue statements are used to jump out of the loop and
continue looping. Break and continue statements in c

Till now, we have learned about the looping with which we can repeatedly execute the
code such as, for loop and while & do … while loop.

Just think what will you do when you want to jump out of the loop even if the condition is
true or continue repeated execution of code skipping some of the parts?

http://www.trytoprogram.com/c-programming/c-programming-for-loop/
http://www.trytoprogram.com/c-programming/c-programming-while-and-do-while-loop/

182

For this C provides break and continue statements. By the help of these statements, we
can jump out of loop anytime and able continue looping by skipping some part of the
code.

The break statement in C

In any loop break is used to jump out of loop skipping the code below it without caring
about the test condition.

It interrupts the flow of the program by breaking the loop and continues the execution of
code which is outside the loop.

The common use of break statement is in switch case where it is used to skip remaining
part of the code.

How does break statement works?

183

Structure of Break statement

In while loop

while (test_condition)

{

 statement1;

 if (condition)

 break;

 statement2;

}

In do…while loop

do

{

 statement1;

 if (condition)

 break;

 statement2;

}while (test_condition);

In for loop

184

for (int-exp; test-exp; update-exp)

{

 statement1;

 if (condition)

 break;

 statement2;

}

Now in above structure, if test_condition is true then the statement1 will be executed
and again if the condition is true then the program will encounter break statement which
will cause the flow of execution to jump out of loop and statement2 below if statement
will be skipped.

Programming Tips

break statement is always used with if statement inside a loop and loop will be
terminated whenever break statement is encountered.

Example: C program to take input from the user until he/she enters zero.

#include <stdio.h>

int main ()

{

 int a;

 while (1)

 {

185

 printf("enter the number:");

 scanf("%d", &a);

 if (a == 0)

 break;

 }

 return 0;

}

Explanation

In above program, while is an infinite loop which will be repeated forever and there is no
exit from the loop.

So the program will ask for input repeatedly until the user will input 0.

When the user enters zero, the if condition will be true and the compiler will encounter
the break statement which will cause the flow of execution to jump out of the loop.

The continue statement in C

Like a break statement, continue statement is also used with if condition inside the loop
to alter the flow of control.

When used in while, for or do...while loop, it skips the remaining statements in the body
of that loop and performs the next iteration of the loop.

Unlike break statement, continue statement when encountered doesn‘t terminate the
loop, rather interrupts a particular iteration.

http://www.trytoprogram.com/c-programming/c-programming-if-statement/
http://www.trytoprogram.com/c-programming/c-programming-while-and-do-while-loop/
http://www.trytoprogram.com/c-programming/c-programming-for-loop/

186

How continue statement work?

Structure of continue statement

In while loop

while (test_condition)

{

 statement1;

187

 if (condition)

 continue;

 statement2;

}

In do…while loop

do

{

 statement1;

 if (condition)

 continue;

 statement2;

}while (test_condition);

In for loop

for (int-exp; test-exp; update-exp)

{

 statement1;

 if (condition)

 continue;

188

 statement2;

}

Explanation

In above structures, if test_condition is true then the continue statement will interrupt the
flow of control and block of statement2 will be skipped, however, iteration of the loop will
be continued.

Example: C program to print sum of odd numbers between 0 and 10

#include <stdio.h>

int main ()

{

 int a,sum = 0;

 for (a = 0; a < 10; a++)

 {

 if (a % 2 == 0)

 continue;

 sum = sum + a;

 }

 printf("sum = %d",sum);

 return 0;

189

}

Output

sum = 25

Modular Programming:

Passing arguments by value

I will call what you are passing in a to a function the actual parameters, and where you
receive them, the parameters in the function, the formal parameters. They are also
called actual and formal arguments.

When passing parameters, what it is called and what happens can be confusing. It is
less essential that you call it the "correct" thing than you know exactly what is
happening. It is critical to have a good mental model, a valid memory picture of the
process.

Recall that when you call a function, a chunk of memory called an activation record is
allocated. Critical to the discussion here is that this memory holds the formal parameter
values and function local variables.

By definition, pass by value means you are making a copy in memory of the actual
parameter's value that is passed in, a copy of the contents of the actual parameter. Use
pass by value when when you are only "using" the parameter for some computation, not
changing it for the client program.

In pass by reference (also called pass by address), a copy of the address of the actual
parameter is stored. Use pass by reference when you are changing the parameter
passed in by the client program.

Consider a swapping function to demonstrate pass by value vs. pass by reference. This
function, which swaps ints, cannot be done in Java.

 main() {
 int i = 10, j = 20;
 swapThemByVal(i, j);
 cout << i << " " << j << endl; // displays 10 20
 swapThemByRef(i, j);
 cout << i << " " << j << endl; // displays 20 10
 ...
 }

190

 void swapThemByVal(int num1, int num2) {
 int temp = num1;
 num1 = num2;
 num2 = temp;
 }

 void swapThemByRef(int& num1, int& num2) {
 int temp = num1;
 num1 = num2;
 num2 = temp;
 }
First, we show the memory picture for swapThemByVal. The activation record holds the
memory for the two parameters, num1 and num2, and the local variable, temp. A copy
of the values from main, in the contents of i and j, are copied. All the manipulation is
done in the activation record.
 +-------------+ +-------------+
 swapThemByVal: |+--+ | swapThemByVal: |+--+ |
 (at start) ||..| temp | (after ||10| temp |
main: |+--+ | assignments) |+--+ |
 +----+ |+--+ | |+--+ |
i | 10 | ||10| num1 | ||20| num1 |
 +----+ |+--+ | |+--+ |
 +----+ |+--+ | |+--+ |
j | 20 | ||20| num2 | ||10| num2 |
 +----+ |+--+ | |+--+ |
 +-------------+ +-------------+
The contents of memory of i and j don't change. The contents of memory in the
function's activation record changes, but when the function terminates, the memory is
released and the changes are lost.

Contrast this with passing by reference. The addresses of i and j are passed
(noted by the arrows) by reference. The compiler knows they are references so when
the parameters are referred to in the function, the compiler dereferences num1 and
num2 automatically so i and j of main's memory are changed.
 +-------------+
 swapThemByRef: |+--+ |
 ||..| temp |
main: |+--+ |
 +----+ |+--+ |
i | 10 | <-------------||--| num1 |
 +----+ |+--+ |
 +----+ |+--+ |
j | 20 | <-------------||--| num2 |
 +----+ |+--+ |
 +-------------+

191

After the assignments:
 +-------------+
 swapThemByRef: |+--+ |
 ||10| temp |
main: |+--+ |
 +----+ |+--+ |
i | 20 | <-------------||--| num1 |
 +----+ |+--+ |
 +----+ |+--+ |
j | 10 | <-------------||--| num2 |
 +----+ |+--+ |
 +-------------+
This is the essence of pass by value vs. pass by reference. It doesn't matter if the
parameters are primitive types, arrays, or objects, either a copy is made or an address
is stored. As noted elsewhere, when objects are copied, the copy constructor is called
to do the copying.

Typically if you aren't going to change a variable, you use pass by value. But if you are
passing something in that uses a lot of memory, i.e., passing an object or passing an
array, even if you aren't changing it, you use what I like to call fake pass by value.

For efficiency, you pass by reference so only the address is passed, but you put
a const in front of it. This casts it to a constant for use in the function. Note that if this
function passes to some other function, it is now constant object or array. For example:
main() {
 SomeBigClass x(100);
 // initialize and do whatever with x
 doSomething(x);
 ...
}

void doSomething(const SomeBigClass& x) {
 ...
}

scope rules and global variables

Scope of an identifier is the part of the program where the identifier may directly be
accessible. In C, all identifiers are lexically(or statically) scoped. C scope rules can be
covered under the following two categories.
There are basically 4 scope rules:

https://courses.washington.edu/css342/zander/css332/arrayparam.html
https://courses.washington.edu/css342/zander/css332/arrayparam.html
https://www.geeksforgeeks.org/static-and-dynamic-scoping/

192

SCOPE MEANING

File Scope

Scope of a Identifier starts at the beginning of the file and ends at the

end of the file. It refers to only those Identifiers that are declared

outside of all functions. The Identifiers of File scope are visible all

over the file Identifiers having file scope are global

Block Scope

Scope of a Identifier begins at opening of the block / ‗{‗ and ends at

the end of the block / ‗}‘. Identifiers with block scope are local to their

block

Function

Prototype

Scope

Identifiers declared in function prototype are visible within the

prototype

Function

scope

Function scope begins at the opening of the function and ends with

the closing of it. Function scope is applicable to labels only. A label

declared is used as a target to goto statement and both goto and

label statement must be in same function

Let‘s discuss each scope rules with examples.

File Scope: These variables are usually declared outside of all of the functions and
blocks, at the top of the program and can be accessed from any portion of the program.
These are also called the global scope variables as they can be globally accessed.

Example 1:

// C program to illustrate the global scope

#include <stdio.h>

193

// Global variable
int global = 5;

// global variable accessed from
// within a function
void display()
{
 printf("%d\n", global);
}

// main function
int main()
{
 printf("Before change within main: ");
 display();

 // changing value of global
 // variable from main function
 printf("After change within main: ");
 global = 10;
 display();
}
Output:
Before change within main: 5

After change within main: 10

separate compilation

C++ supports separate compilation, where pieces of the program can be compiled
independently through the two stage approach of compilation and then linking, so
changes to one class would not necessarily require the re-compilation of the other
classes. The compiled pieces of code (.o or .obj files)[8] are combined through the use
of the linker (in the use of Borland C++ it is ilink32.exe). Separate compilation allows
programs to be compiled and tested one class at a time, even built into libraries for later
use. It is therefore good practice to place each class in a separate source file to take full
advantage of separate compilation with the C++ language.

The source code for each class is stored in two files:

 A source file (.cpp) - the implementation of the methods.

 A header file (.h) - the definition of the class.

http://www.eeng.dcu.ie/~ee553/ee402notes/html/ch03s14.html#ftn.d4e3056

194

The header file contains the declarations for the methods contained in the cpp file,
allowing for these cpp files to be compiled into libraries. The cpp file will define the
methods and by including the header file within the cpp file you will ensure consistency
between the declarations and definitions.

So the Account class would take the form of three separate files:

 Account.h - That stores the class declaration and definition.

 Account.cpp - That stores the method definitions for that class.

 Application.cpp - That stores the application, i.e. the main() method for the
application.

So the header file (Account.h) will have the form:

 1
 2
 3 #include<iostream>
 4 #include<string>
 5
 6 using std::string; // only string is required
 7
 8 class Account{
 9
10 protected:
11
12 int accountNumber;
13 float balance;
14 string owner;
15
16 public:
17
18 Account(string owner, float aBalance, int anAccountNumber);
19 Account(float aBalance, int anAccountNumber);
20 Account(int anAccountNumber);
21 Account(const Account &sourceAccount);
22
23 ...
24 };
25

You should not place using directives in header files where possible. If we were to
use using namespace std; in our header file, all cpp files that include this header
would also include this using directive. This would have the effect of turning off
namespaces in your project (in this case for std only).

http://www.eeng.dcu.ie/~ee553/ee402notes/html/cpp/SeparateCompilation/Account.h
http://www.eeng.dcu.ie/~ee553/ee402notes/html/cpp/SeparateCompilation/Account.cpp
http://www.eeng.dcu.ie/~ee553/ee402notes/html/cpp/SeparateCompilation/Application.cpp
http://www.eeng.dcu.ie/~ee553/ee402notes/html/ch03s14.html
http://www.eeng.dcu.ie/~ee553/ee402notes/html/ch03s14.html
http://www.eeng.dcu.ie/~ee553/ee402notes/html/ch03s14.html
http://www.eeng.dcu.ie/~ee553/ee402notes/html/ch03s14.html
http://www.eeng.dcu.ie/~ee553/ee402notes/html/ch03s14.html
http://www.eeng.dcu.ie/~ee553/ee402notes/html/ch03s14.html
http://www.eeng.dcu.ie/~ee553/ee402notes/html/ch03s14.html
http://www.eeng.dcu.ie/~ee553/ee402notes/html/ch03s14.html

195

The implementation file (Account.cpp) will have the form:

 #include "Account.h"

 using namespace std;

 Account::Account(string anOwner, float aBalance, int anAccNumber):
 accountNumber(anAccNumber), balance(aBalance),
 owner (anOwner) {}

 Account::Account(float aBalance, int anAccNumber) :
 accountNumber(anAccNumber), balance(aBalance),
 owner ("Not Defined") {}

 Account::Account(int anAccNumber):
 accountNumber(anAccNumber), balance(0.0f),
 owner ("Not Defined") {}

 Account::Account(const Account &sourceAccount):
 accountNumber(sourceAccount.accountNumber + 1),
 balance(0.0f),
 owner (sourceAccount.owner) {}

 ...

And the application (Application.cpp) will have the form:

 #include "Account.h"

 int main()
 {
 Account a = Account("Derek Molloy",35.00,34234324);

 ...
 }

To compile the application, you must now specify the files to be used in the compilation.
So, to compile all the files at once use: bcc32 Application.cpp Account.cpp, where
one of the source files contains a main() method. This can be seen in Figure 3.11,
―Compilation, and the output from the Separately Compiled Example.‖.

http://www.eeng.dcu.ie/~ee553/ee402notes/html/ch03s14.html#SeparateCompilation
http://www.eeng.dcu.ie/~ee553/ee402notes/html/ch03s14.html#SeparateCompilation

196

Figure 3.11. Compilation, and the output from the Separately Compiled Example.

Just before we continue we need to briefly discuss preprocessor directives.
Preprocessor directives are orders for the preprocessor, not for the program itself. They
must be specified in a single line of code and should not end with a ; (semicolon). Some
preprocessor directives are: #include (insert a header file here), #define (define a
constant macro)

 #define PI 3.14

#undef (removes definition), #if, #ifdef, #ifndef, #endif, #else, #elif (control directives to
remove part of a program depending on the condition),

 #ifndef MAX_WIDTH
 #define MAX_WIDTH 1000
 #endif

197

#line (allows control over compile time error messages), #error (allows us to abort
compilation if required), e.g.

 #ifndef __cplusplus
 #error You need a C++ compiler for this code!
 #endif

and #pragma (used for compiler options specific to a particular platform and compiler).

If there are multiple classes, some of which use the same parent, you can use compiler
directives to prevent the re-definition of the same class, which would result in a compiler
error. These directives can be placed around the class definition such as:

 #ifndef currentAccount_h //check not already defined
 #define currentAccount_h //if not, define!

 #include "Account.h" //include the account header

 class CurrentAccount: public Account{

 protected:
 float overDraftLimit;
 ...

 public:

 CurrentAccount(int theNumber, char* theOwner, float theOverdraftLimit);
 ...
 };

 #endif // currentAcount_h

In this case, the compiler directives simply state that if the CurrentAccount class is
already defined then do not redefine it. This is determined by
the currentAccount_h value, that if undefined is simply defined, and so used as a flag.
This process is to ensure that we have not broken the C++ single definition rule: You
can declare anything as many times as you want, but you can only define it once.

Fortunately, for the purpose of professional development, tools such as Integrated
Development Environments(IDEs) can automatically insert the required preprocessor
directives.

198

Linkage

Genetic linkage describes the way in which two genes that are located close to each
other on a chromosome are often inherited together. In 1905, William Bateson, Edith
Rebecca Saunders, and Reginald C. Punnett noted that the traits for flower color and
pollen shape in sweet pea plants appeared to be linked together. A few years later, in
1911, Thomas Hunt Morgan, who was studying heredity in fruit flies, noticed that the
eye color of a fly was associated with the fly's sex and hypothesized that the two traits
were linked together. These observations led to the concept of genetic linkage, which
describes how two genes that are closely associated on the same chromosome are
frequently inherited together. In fact, the closer two genes are to one another on a
chromosome, the greater their chances are of being inherited together or linked. In
contrast, genes located farther away from each other on the same chromosome are
more likely to be separated during recombination, the process that recombines DNA
during meiosis. The strength of linkage between two genes, therefore, depends upon
the distance between the genes on the chromosome.

building your own modules

This chapter describes how to create your own RADIUS module. Extending the

RADIUS server is a task for advanced users with special requirements. Creating new

modules requires C or C++ programming skills and an understanding of the RADIUS

protocol and thread programming.

Before creating a custom module you should be familiar with:

 Understanding RADIUS Manager Modules

 Configuring RADIUS Manager

 Using the Authentication and Authorization Modules

About Creating Custom Modules

Before creating your own module, be sure that the task you wish to accomplish cannot
be performed by one of the modules supplied with the RADIUS Manager.

You may write a custom module which authenticates and modifies incoming packets to
handle special conditions. You also might want to modify logins to provide greater
flexibility in managing requests. With custom modules, you can:

 Add or remove part of a login.

https://docs.oracle.com/cd/E16754_01/doc.75/e16715/dpm_mod_intro.htm#g1074774
https://docs.oracle.com/cd/E16754_01/doc.75/e16715/dpm_config.htm#g1094037
https://docs.oracle.com/cd/E16754_01/doc.75/e16715/dpm_mod_auth.htm#i1069686

199

 Authenticate a request against an alternate database.

 Handle requests with identical logins.

Use mod_example as a template for your new module. Customize the required
sections, and link your custom modules with the core functionality module libraries to
produce new RADIUS server binaries.

Checklist for Creating Custom Modules

This checklist provides an overview of tasks that must be performed when you create a
custom module. To create a custom module:

1. Review the Module Class Model as implemented by RADIUS Manager.
See "About the Module Class Model".

2. After RADIUS Manager is installed, locate the mod_example template
in BRM_home/source/apps/radius, where BRM_home is the directory in which
BRM components are installed.

3. Copy the mod_example.cpp and mod_example.h files. Store the copies in
the BRM_home/source/apps/radius directory.

4. Add the new module to the definitions file
(BRM_home/source/apps/radius/moddef.cpp) file.

5. Add functionality to the new module, by modifying
the module.h and module.cpp files.

6. Add an object for the new module to the Makefile:

OBJS = moddef.o <mod_new>.o

7. Build your custom module and link it with the libraries to produce a
new radiusid executable:

1. Stop the RADIUS server, if it is running.

2. Copy pin_radiusid from the current directory to BRM_home/bin.

3. Edit the RADIUS configuration file (BRM_home/apps/radius/config) to add the
new module to the module chain.

4. Start the RADIUS server.

5. Test the new module.

https://docs.oracle.com/cd/E16754_01/doc.75/e16715/dpm_mod_cust.htm#i1034893

200

Modifying the Definitions File

Modify the definitions file (BRM_home/source/apps/radius/moddef.cpp) file by
declaring the module master creation function and adding the name of your module to
the module definition table.

Add this line:

{<mod_examplename>, MDF_NONE, RadiusModuleNew_create}

To this section of the moddef.cpp file:

....

 extern RadiusModule *RadiusModuleTransform_create(string theName, string
theType,

 ModuleDefFlags theFlags);

 const ModuleConfigType module_config[] = {

 { "mod_null", MDF_NONE, RadiusModuleNull_create },

 #ifdef __unix

 { "mod_unixpwd", MDF_NONE, RadiusModuleUnixpwd_create },

 //{ "mod_ipass", MDF_NONE, RadiusModuleIPass_create },

 #endif

 { "mod_proxy", MDF_NONE, RadiusModuleProxy_create },

 { "mod_text", MDF_NONE, RadiusModuleText_create },

 { "mod_logging", MDF_NONE, RadiusModuleLogging_create },

 { "mod_transform", MDF_NONE, RadiusModuleTransform_create },

 { 0, MDF_NONE, 0 }

 { "mod_pin", MDF_NONE, RadiusModulePin_create },

};

201

Adding Functionality to a Custom Module

To add functionality to a custom module you must understand the C++ API interface
and the Module Class Module.

About the C++ API Interface to RADIUS Modules

To create a new module type, declare new C++ classes which inherit from a set of base
classes, and then implement the module type-specific functionality. The virtual base
class for module masters is RadiusModule. See modbase.h for detailed information
about the RadiusModule.

The module masters are instantiated by a special module definition table.
See moddef.cpp for detailed information about the module definition table. The API
support files contain specific information about using each file.

Support Header Files

The support header files (module.h) are self-documenting. See the following files for
details:

In source/apps/radius:

 moddef.h

In source/apps/radius/include/general:

 applog.h - Application log functions
 debuglog.h - Debug log functions
 ipconvert.h - IP address translation utilities
 list.h - List processing functions
 lstring.h - String class
 strutil.h - String processing functions
 usersconfig.h - How to handle configuration files

In source/apps/radius/include/modules:

 checksend.h - Check and send support for modules
 modbase.h - Definitions of module classes
 request.h - Incoming RADIUS request
 stdconfig.h - Standard configuration keywords used in the configuration file
 systemdict.h - Accessing the RADIUS dictionary

In source/apps/radius/include/radius:

 attr.h - RADIUS attribute processing functions

202

 dict.h - Dictionary processing functions
 packet.h - RADIUS packet processing functions
 password.h - Processing the RADIUS password attribute
 structdatatype.h - Support for the struct data type in the dictionary
 types.h - Enumerated values for attributes and their types

About the Module Class Model

Before writing a custom module, you must understand the Module Class Model and the
support APIs.

This section describes the C++ API interface to module masters and module workers. A
virtual base class inheritance model is used. This means that creating a new module
type involves declaring new C++ classes which inherit from a set of base classes and
then implement the module type's specific functionality.

About Configuring Modules

The modules, which are configured in the RADIUS configuration file
(BRM_home/apps/radius/config), form an ordered list. When a request is received
from the core server, it is processed by each module in turn until one of the modules
indicates that it has completely processed the request. Note that the behavior of a
module is determined by its configuration, especially its type.

Each module indicates what should happen next by setting a "return value":

 MRT_CONTINUE indicates that the request should be passed to the next
module.

 MRT_COMPLETE indicates that the request has been successfully processed.
The response has been filled in by the module and should be sent to the
requesting client (NAS).

 MRT_ERROR indicates that an error has occurred and the request should be
discarded.

 MRT_DISCARD indicates that the request should be discarded. When an
individual module receives a request, it performs the following tasks:

o Checks to see that the request matches its check sections. If not, it returns

MRT_CONTINUE.
o Optionally makes changes to the incoming request by adding, deleting, or

modifying attributes. (See mod_transform for an example).
o Optionally makes changes to the outgoing response by setting the response

type, and adding, deleting, or modifying attributes.

203

o Optionally adding attributes from any send sections to the outgoing
response.

o Returns MRT_CONTINUE, MRT_COMPLETE or MRT_ERROR as
appropriate.

o If the end of the module list is reached and no module has returned
MRT_COMPLETE, the request is discarded.

About the Module Master

The virtual base class for module masters is RadiusModule. The salient parts are
shown here from modbase.h. See modbase.h for detailed information.

class RadiusModule {

 protected:

 ModuleDefFlags flags;

 string name;

 string type;

 int ref_count;

 pthread_mutex_t mutex;

 ConfigEntry *shared_config; // A copy of $CONFIG->(name)

 ConfigEntry *worker_config; // A copy of $MODULES->(name)

 /*

 ** use()

 **

 ** Increments the reference count.

 */

 void use();

204

 public:

 /*

 ** RadiusModule()

 **

 ** Create a module master.

 ** The default operation intitialises name, type and flags from

 ** the parameters and sets the reference count to 1.

 */

 RadiusModule(string name, string type, ModuleDefFlags flags);

 /*

 ** ~RadiusModule()

 **

 ** Destroy the module master.

 ** Automatically called when the reference count reaches 0 (see use(), unuse())

 */

 virtual ~RadiusModule();

 /*

 ** unuse()

 **

 ** Decrement the reference count and if it reaches 0, destroys the object.

 */

 void unuse();

205

 /*

 ** newConfig()

 **

 ** Called when the configuration manager detects that

 ** new configuration information is available.

 **

 ** Default implementation searches for the entry $MODULES->(name),

 ** where (name) is the name of this module entry, and stores

 ** a copy of that part of the configuration tree in 'worker_config'.

 ** It also searches for $CONFIG->(name) and stores the result (if found)

 ** in shared_config.

 */

 virtual void newConfig(const ConfigEntry *top_config);

 /*

 ** createWorker()

 **

 ** User-defined function which creates a module worker.

 ** The worker object should take a COPY of its configuration,

 ** since during a reconfig, the worker may need to complete the

 ** current request before it dies.

 **

 ** Must call use() to increment the reference count on this object.

 */

 virtual RadiusModuleWorker *createWorker(int theThreadId) = 0;

206

 /*

 ** lock()

 ** unlock()

 **

 ** Synchronise access to this object.

 */

 void lock();

 void unlock();

 };

Methods Defined in Derived Classes for the Master Module

These methods may be defined in the derived class. See the source
for mod_example as an example.

Constructor

You must provide a constructor in order to initialize the module master. The base class
constructor must be called.

Example:

RadiusModuleExample::RadiusModuleExample(string name_, string type_,
ModuleDefFlags flags_)

: RadiusModule(name_, type_, flags_)

{

}

Destructor

Destroys the object. Generally doesn't need to do anything.

207

Example:

 RadiusModuleExample::~RadiusModuleExample()

 {

 }

newConfig()

This method is called both at startup and when a reconfiguration event occurs. It is the
responsibility of the module master to extract the appropriate configuration from the
configuration tree. The default implementation keeps a reference to both the module
type configuration (shared_config) and the per-module configuration (worker_config).
Thus, most modules do not require a special implementation of this method.

createWorker()

This method creates a new module worker and increments the reference count.
Typically, this method simply creates a new module worker of the appropriate type. The
module worker is responsible for taking a copy of both the per-module configuration
(worker_config) and the module type configuration (shared_config), when
appropriate. It must also call use() to ensure that the reference count is incremented.

Example:

 RadiusModuleWorker *

 RadiusModuleExample::createWorker(int thread_id)

 {

 assert(worker_config != 0);

 use();

 return(new RadiusModuleExampleWorker(this, worker_config,

 shared_config, thread_id));

 }

About Worker Modules

208

The module worker is where most of the work of the module is accomplished.The virtual
base class for module workers is RadiusModuleWorker. The salient parts are shown
here from modbase.h. See modbase.h for detailed information.

Methods Defined in Derived Classes for Worker Modules

This section describes the APIs to module workers.

Constructor (required)

A constructor is required in order to initialize the module worker information.The base
class constructor must be called to initialize the parent pointer and to copy
the worker_config. Any configuration information that will be referenced must be
copied. Specific configuration can also be extracted from the worker_config,
the shared_config, or both. A CheckSend object is normally created here. Also, any
standard options should be parsed here.

Example:

 RadiusModuleExampleWorker::RadiusModuleExampleWorker(RadiusModule
*parent_,

 const ConfigEntry *worker_config,

 const ConfigEntry *shared_config,

 int thread_id)

 : RadiusModuleWorker(parent_, worker_config, thread_id)

 {

 checksend = new RadiusCheckSend(&config);

 action = config.getValue(MOD_EXAMPLE_ACTION);

 if (action == "") {

 APP_LOG(("[W]%s: No action specified in config. Using action=ignore.",

 (const char *)getName()));

 action = MOD_EXAMPLE_ACTION_IGNORE;

 }

 /* No shared_config for this module type */

209

 }

Destructor

Destroys the object.

Example:

 RadiusModuleExampleWorker::~RadiusModuleExampleWorker()

 {

 delete checksend;

 }

acceptRequest()

Processes the given request. The method:

 May modify request->input if appropriate, by adding, modifying, or deleting
attributes.

 May modify request->output if appropriate, by setting the type, or adding,
modifying, or deleting attributes.

 Should call checksend->check() as the first thing, if appropriate, which should
almost always be the case.

 Should call checksend->addSendAttr() as the last thing when sending a
response.

Returns one of MRT_..., such as:

 RadiusModuleWorker::ModuleReturnType

 RadiusModuleExampleWorker::acceptRequest(RadiusModuleRequest *request)

 {

 // Do standard check processing

 if (checksend->check(request->input, getSystemDict()) == 0) {

 return(MRT_CONTINUE);

 }

 DEBUG_LOG(("%s: check succeeded", (const char *)getName()));

210

 if (action == MOD_EXAMPLE_ACTION_DISCARD) {

 return(MRT_DISCARD);

 }

 if (action == MOD_EXAMPLE_ACTION_IGNORE) {

 return(MRT_CONTINUE);

 }

 if (action == MOD_EXAMPLE_ACTION_NAK) {

 switch (request->input->getType()) {

 case PW_ACCESS_REQUEST:

 request->output->setType(PW_ACCESS_REJECT);

 break;

 case PW_ACCOUNTING_REQUEST:

 request->output->setType(PW_ACCOUNTING_RESPONSE);

 break;

 default:

 return(MRT_DISCARD);

 }

 }

 else if (action == MOD_EXAMPLE_ACTION_ACK) {

 switch (request->input->getType()) {

211

 case PW_ACCESS_REQUEST:

 request->output->setType(PW_ACCESS_ACCEPT);

 break;

 case PW_ACCOUNTING_REQUEST:

 request->output->setType(PW_ACCOUNTING_RESPONSE);

 break;

 default:

 return(MRT_DISCARD);

 }

 }

 else {

 APP_LOG(("%s: unknown action: %s",

 (const char *)getName(), (const char *)action));

 return(MRT_ERROR);

 }

 checksend->addSendAttr(request->output, getSystemDict(),

 RadiusCheckSend::ADD_APPEND);

 return(MRT_COMPLETE);

Instantiating Module Masters

The sections above describe the APIs to module masters and module workers;
however, they don't explain how module masters are instantiated.This is managed by a
special module definition table.The excerpt below is from moddef.cpp:

212

 extern RadiusModule *RadiusModuleTransform_create(string theName, string
theType,

 ModuleDefFlags theFlags);

 const ModuleConfigType module_config[] = {

 { "mod_null", MDF_NONE, RadiusModuleNull_create },

 #ifdef __unix

 { "mod_unixpwd", MDF_NONE, RadiusModuleUnixpwd_create },

 //{ "mod_ipass", MDF_NONE, RadiusModuleIPass_create },

 #endif

 { "mod_proxy", MDF_NONE, RadiusModuleProxy_create },

 { "mod_text", MDF_NONE, RadiusModuleText_create },

 { "mod_logging", MDF_NONE, RadiusModuleLogging_create },

 { "mod_transform", MDF_NONE, RadiusModuleTransform_create },

 { 0, MDF_NONE, 0 }

 { "mod_example", MDF_NONE, RadiusModuleExample_create },

 { "mod_pin", MDF_NONE, RadiusModulePin_create },

};

Note:
Configure the mod_pin module after configuring all the other modules

because mod_pin prepares the RADIUS response and sends it to the client.

This table associates Module Type names with functions that know how to create a
module master of the associated class.You can modify this table to add custom
modules.

Example of a module master creation function:

213

 RadiusModule *

 RadiusModuleExample_create(string name, string type, ModuleDefFlags flags)

 {

 return(new RadiusModuleExample(name, type, flags));

 }

This function creates an object of the appropriate type and returns it.

Sample Code for a Custom Module

This sample prints the name of the incoming RADIUS attributes and their values and
appends the domain name to the user name attribute.

const RadiusAttr *theAttr = NULL;

RadiusAttr * newAttr = NULL;

/* This code prints the names of the incoming RADIUS atttributes and their valus */

DEBUG_LOG(("printing all attributes in the packet"));

while ((theAttr = request->input->getEntry (theAttr)) != 0) {

string name = theAttr->printName(getSystemDict());

string value = theAttr->printValue(getSystemDict());

DEBUG_LOG(("attribute name = %s", (const char *)name));

DEBUG_LOG(("attribute value = %s", (const char *)value));

if (theAttr->getCode() <= PW_LAST_VALID_ATTR_CODE) {

newAttr = new RadiusAttr (theAttr->getCode(),

theAttr->getBuffer(),

theAttr->getBufferLength());

request->output->addAttr ((RadiusAttr *)newAttr);

}

214

}

/* the following piece of code will append a domain name to the

user-name attribute i.e if the username is joe, this code

will change it to joe@myisp.com, the 'add_domain' keywords

must be defined in your .h file and specified in the config file.

*/

DEBUG_LOG(("appending domain name to the user-name attribute"));

theAttr = request->input->getEntry (PW_USER_NAME, NULL);

string value = theAttr->printValue(getSystemDict());

if (add_domain != "") {

DEBUG_LOG(("adding domain %s to username %s", add_domain.PeekString(),
value.PeekString()));

value += add_domain;

RadiusAttr * newAttr = new RadiusAttr (PW_USER_NAME, value);

const RadiusAttr * modAttr = request->input->modifyAttr (theAttr, newAttr);

RadiusAttr * outAttr = new RadiusAttr (modAttr->getCode(), modAttr->getBuffer(),
modAttr->getBufferLength());

request->output->addAttr ((RadiusAttr *)outAttr);

Adding a New Module to the RADIUS Configuration File

Edit the RADIUS configuration file (BRM_home/apps/radius/config) to add the new
module to the module chain.

Example:

type=<mod_new>

status=enables

215

<check>

<module specfic actions>

<send>

<etc.)

Starting and Stopping the RADIUS Daemon

When you finish modifying the RADIUS configuration file you must restart the RADIUS
daemon.

Use this procedure:

1. Check to ensure that the RADIUS config file and dictionary file are in the
directory BRM_home/apps/radius.

2. Run either the start or stop
script, BRM_home/bin/start_radius or BRM_home/bin/stop_radius. These
scripts can be run manually but you should make them part of the software
initialization at startup time.

3. If you want pin_radiusd to start automatically when you restart the machine.

4. Run the BRM_home/bin/install_radius script after you install the software.
The install_radius script puts the required entries in the /etc/rc2.d directory to
start pin_radiusd automatically.

216

UNIT IV

Arrays:

Array notation and representation

Arrays a kind of data structure that can store a fixed-size sequential collection of
elements of the same type. An array is used to store a collection of data, but it is often
more useful to think of an array as a collection of variables of the same type.

Instead of declaring individual variables, such as number0, number1, …, and
number99, you declare one array variable such as numbers and use numbers[0],
numbers[1], and …, numbers[99] to represent individual variables. A specific element in
an array is accessed by an index.

All arrays consist of contiguous memory locations. The lowest address corresponds to
the first element and the highest address to the last element.

Declaring Arrays

To declare an array in C, a programmer specifies the type of the elements and the
number of elements required by an array as follows −

type arrayName [arraySize];
This is called a single-dimensional array. The arraySize must be an integer constant
greater than zero and type can be any valid C data type. For example, to declare a 10-
element array called balance of type double, use this statement −

double balance[10];
Here balance is a variable array which is sufficient to hold up to 10 double numbers.

Initializing Arrays

You can initialize an array in C either one by one or using a single statement as follows
−

double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};
The number of values between braces { } cannot be larger than the number of elements
that we declare for the array between square brackets [].

If you omit the size of the array, an array just big enough to hold the initialization is
created. Therefore, if you write −

double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};
You will create exactly the same array as you did in the previous example. Following is
an example to assign a single element of the array −

217

balance[4] = 50.0;
The above statement assigns the 5th element in the array with a value of 50.0. All arrays
have 0 as the index of their first element which is also called the base index and the last
index of an array will be total size of the array minus 1. Shown below is the pictorial
representation of the array we discussed above −

manipulating array elements

An element is accessed by indexing the array name. This is done by placing the index
of the element within square brackets after the name of the array. For example −

double salary = balance[9];
The above statement will take the 10th element from the array and assign the value to
salary variable. The following example Shows how to use all the three above mentioned
concepts viz. declaration, assignment, and accessing arrays −

#include <stdio.h>

int main () {

 int n[10]; /* n is an array of 10 integers */
 int i,j;

 /* initialize elements of array n to 0 */
 for (i = 0; i < 10; i++) {
 n[i] = i + 100; /* set element at location i to i + 100 */
 }

 /* output each array element's value */
 for (j = 0; j < 10; j++) {
 printf("Element[%d] = %d\n", j, n[j]);
 }

 return 0;
}
When the above code is compiled and executed, it produces the following result −

Element[0] = 100
Element[1] = 101
Element[2] = 102
Element[3] = 103
Element[4] = 104
Element[5] = 105
Element[6] = 106
Element[7] = 107

218

Element[8] = 108
Element[9] = 109

using multidimensional arrays

Multidimensional Arrays can be defined in simple words as array of arrays. Data in
multidimensional arrays are stored in tabular form (in row major order).

Syntax:

data_type[1st dimension][2nd dimension][]..[Nth
dimension] array_name = new data_type[size1][size2]….[sizeN];

where:

 data_type: Type of data to be stored in the array. For example: int, char, etc.
 dimension: The dimension of the array created.

For example: 1D, 2D, etc.
 array_name: Name of the array
 size1, size2, …, sizeN: Sizes of the dimensions respectively.

Examples:

Two dimensional array:

int[][] twoD_arr = new int[10][20];

Three dimensional array:

int[][][] threeD_arr = new int[10][20][30];

Size of multidimensional arrays: The total number of elements that can be stored in a
multidimensional array can be calculated by multiplying the size of all the dimensions.
For example:
The array int[][] x = new int[10][20] can store a total of (10*20) = 200 elements.
Similarly, array int[][][] x = new int[5][10][20] can store a total of (5*10*20) = 1000
elements.

Two – dimensional Array (2D-Array)

Two – dimensional array is the simplest form of a multidimensional array. A two –
dimensional array can be seen as an array of one – dimensional array for easier
understanding.

Indirect Method of Declaration:
 Declaration – Syntax:

219

 data_type[][] array_name = new data_type[x][y];
 For example: int[][] arr = new int[10][20];

 Initialization – Syntax:
 array_name[row_index][column_index] = value;
 For example: arr[0][0] = 1;

Example:
filter_none
edit
play_arrow
brightness_4

class GFG {
 public static void main(String[] args)
 {

 int[][] arr = new int[10][20];
 arr[0][0] = 1;

 System.out.println("arr[0][0] = " + arr[0][0]);
 }
}

Output:

arr[0][0] = 1

Direct Method of Declaration:

Syntax:

data_type[][] array_name = {
 {valueR1C1, valueR1C2,},
 {valueR2C1, valueR2C2,}
 };

For example: int[][] arr = {{1, 2}, {3, 4}};

Example:
filter_none
edit

220

play_arrow
brightness_4

class GFG {
 public static void main(String[] args)
 {

 int[][] arr = { { 1, 2 }, { 3, 4 } };

 for (int i = 0; i < 2; i++)
 for (int j = 0; j < 2; j++)
 System.out.println("arr[" + i + "][" + j + "] = "
 + arr[i][j]);
 }
}

Output:

arr[0][0] = 1

arr[0][1] = 2

arr[1][0] = 3

arr[1][1] = 4

Accessing Elements of Two-Dimensional Arrays

Elements in two-dimensional arrays are commonly referred by x[i][j] where ‗i‘ is the row
number and ‗j‘ is the column number.

Syntax:

x[row_index][column_index]

For example:

int[][] arr = new int[10][20];

arr[0][0] = 1;

The above example represents the element present in first row and first column.

Note: In arrays if size of array is N. Its index will be from 0 to N-1. Therefore, for
row_index 2, actual row number is 2+1 = 3.

221

Example:

filter_none
edit
play_arrow
brightness_4

class GFG {
 public static void main(String[] args)
 {

 int[][] arr = { { 1, 2 }, { 3, 4 } };

 System.out.println("arr[0][0] = " + arr[0][0]);
 }
}

Output:

arr[0][0] = 1

Representation of 2D array in Tabular Format: A two – dimensional array can be seen
as a table with ‗x‘ rows and ‗y‘ columns where the row number ranges from 0 to (x-1) and
column number ranges from 0 to (y-1). A two – dimensional array ‗x‘ with 3 rows and 3
columns is shown below:

Print 2D array in tabular format:

To output all the elements of a Two-Dimensional array, use nested for loops. For this two
for loops are required, One to traverse the rows and another to traverse columns.

Example:

filter_none
edit
play_arrow
brightness_4

class GFG {
 public static void main(String[] args)
 {

 int[][] arr = { { 1, 2 }, { 3, 4 } };

 for (int i = 0; i < 2; i++) {
 for (int j = 0; j < 2; j++) {
 System.out.print(arr[i][j] + " ");

222

 }

 System.out.println();
 }
 }
}
Output:
1 2

3 4

Three – dimensional Array (3D-Array)

Three – dimensional array is a complex form of a multidimensional array. A three –
dimensional array can be seen as an array of two – dimensional array for easier
understanding.

Indirect Method of Declaration:
 Declaration – Syntax:
 data_type[][][] array_name = new data_type[x][y][z];
 For example: int[][][] arr = new int[10][20][30];

 Initialization – Syntax:
 array_name[array_index][row_index][column_index] = value;
 For example: arr[0][0][0] = 1;

Example:
filter_none
edit
play_arrow
brightness_4

class GFG {
 public static void main(String[] args)
 {

 int[][][] arr = new int[10][20][30];
 arr[0][0][0] = 1;

 System.out.println("arr[0][0][0] = " + arr[0][0][0]);
 }
}
Output:
arr[0][0][0] = 1

Direct Method of Declaration:

223

Syntax:

data_type[][][] array_name = {
 {
 {valueA1R1C1, valueA1R1C2,},
 {valueA1R2C1, valueA1R2C2,}
 },
 {
 {valueA2R1C1, valueA2R1C2,},
 {valueA2R2C1, valueA2R2C2,}
 }
 };

For example: int[][][] arr = { {{1, 2}, {3, 4}}, {{5, 6}, {7, 8}} };
Example:
filter_none
edit
play_arrow
brightness_4

class GFG {
 public static void main(String[] args)
 {

 int[][][] arr = { { { 1, 2 }, { 3, 4 } }, { { 5, 6 }, { 7, 8 } } };

 for (int i = 0; i < 2; i++)
 for (int j = 0; j < 2; j++)
 for (int z = 0; z < 2; z++)
 System.out.println("arr[" + i
 + "]["
 + j + "]["
 + z + "] = "
 + arr[i][j][z]);
 }
}
Output:
arr[0][0][0] = 1

arr[0][0][1] = 2

arr[0][1][0] = 3

arr[0][1][1] = 4

arr[1][0][0] = 5

224

arr[1][0][1] = 6

arr[1][1][0] = 7

arr[1][1][1] = 8

Accessing Elements of Three-Dimensional Arrays

Elements in three-dimensional arrays are commonly referred by x[i][j][k] where ‗i‘ is the
array number, ‗j‘ is the row number and ‗k‘ is the column number.
Syntax:
x[array_index][row_index][column_index]

For example:

int[][][] arr = new int[10][20][30];

arr[0][0][0] = 1;

The above example represents the element present in the first row and first column of the
first array in the declared 3D array.

Note: In arrays if size of array is N. Its index will be from 0 to N-1. Therefore, for
row_index 2, actual row number is 2+1 = 3.
Example:
filter_none
edit
play_arrow
brightness_4

class GFG {
 public static void main(String[] args)
 {

 int[][][] arr = { { { 1, 2 }, { 3, 4 } }, { { 5, 6 }, { 7, 8 } } };

 System.out.println("arr[0][0][0] = " + arr[0][0][0]);
 }
}
Output:

arr[0][0][0] = 1

Representation of 3D array in Tabular Format: A three – dimensional array can be
seen as a tables of arrays with ‗x‘ rows and ‗y‘ columns where the row number ranges
from 0 to (x-1) and column number ranges from 0 to (y-1). A three – dimensional array
with 3 array containing 3 rows and 3 columns is shown below:

225

Print 3D array in tabular format:
To output all the elements of a Three-Dimensional array, use nested for loops. For this
three for loops are required, One to traverse the arrays, second to traverse the rows and
another to traverse columns.

Example:
filter_none
edit
play_arrow
brightness_4

class GFG {
 public static void main(String[] args)
 {

 int[][][] arr = { { { 1, 2 }, { 3, 4 } },
 { { 5, 6 }, { 7, 8 } } };

 for (int i = 0; i < 2; i++) {

 for (int j = 0; j < 2; j++) {

 for (int k = 0; k < 2; k++) {

 System.out.print(arr[i][j][k] + " ");
 }

 System.out.println();
 }
 System.out.println();
 }
 }
}
Output:
1 2

3 4

5 6

7 8

Inserting a Multi-dimensional Array during Runtime:
This topic is forced n taking user-defined input into a multidimensional array during
runtime. It is focused on the user first giving all the input to the program during runtime
and after all entered input, the program will give output with respect to each input
accordingly. It is useful when the user wishes to make input for multiple Test-Cases with

226

multiple different values first and after all those things done, program will start providing
output.
As an example, let‘s find the total number of even and odd numbers in an input array.
Here, we will use the concept of a 2-dimensional array. Here are a few points that explain
the use of the various elements in the upcoming code:

 Row integer number is considered as the number of Test-Cases and Column
values are considered as values in each Test-Case.

 One for() loop is used for updating Test-Case number and another for() loop is
used for taking respective array values.

 As all input entry is done, again two for() loops are used in the same manner to
execute the program according to the condition specified.

 The first line of input is the total number of TestCases.

 The second line shows the total number of first array values.

 The third line gives array values and so on.

Implementation:

filter_none
edit
play_arrow
brightness_4

import java.util.Scanner;

public class GFGTestCase {
 public static void main(
 String[] args)
 {
 // Scanner class to take
 // values from console
 Scanner scanner = new Scanner(System.in);

 // totalTestCases = total
 // number of TestCases
 // eachTestCaseValues =
 // values in each TestCase as
 // an Array values
 int totalTestCases, eachTestCaseValues;

 // takes total number of
 // TestCases as integer number

227

 totalTestCases = scanner.nextInt();

 // An array is formed as row
 // values for total testCases
 int[][] arrayMain = new int[totalTestCases][];

 // for loop to take input of
 // values in each TestCase
 for (int i = 0; i < arrayMain.length; i++) {
 eachTestCaseValues = scanner.nextInt();
 arrayMain[i] = new int[eachTestCaseValues];
 for (int j = 0; j < arrayMain[i].length; j++) {
 arrayMain[i][j] = scanner.nextInt();
 }
 } // All input entry is done.

 // Start executing output
 // according to condition provided
 for (int i = 0; i < arrayMain.length; i++) {

 // Initialize total number of
 // even & odd numbers to zero
 int nEvenNumbers = 0, nOddNumbers = 0;

 // prints TestCase number with
 // total number of its arguments
 System.out.println(
 "TestCase " + i + " with "
 + arrayMain[i].length + " values:");
 for (int j = 0; j < arrayMain[i].length; j++) {
 System.out.print(arrayMain[i][j] + " ");

 // even & odd counter updated as
 // eligible number is found
 if (arrayMain[i][j] % 2 == 0) {
 nEvenNumbers++;
 }
 else {
 nOddNumbers++;
 }
 }
 System.out.println();

 // Prints total numbers of
 // even & odd
 System.out.println(

228

 "Total Even numbers: " + nEvenNumbers
 + ", Total Odd numbers: " + nOddNumbers);
 }
 }
}
// This code is contributed by Udayan Kamble.

Input:
2
2
1 2
3
1 2 3

Output:
TestCase 0 with 2 values:
1 2
Total Even numbers: 1, Total Odd numbers: 1
TestCase 1 with 3 values:
1 2 3
Total Even numbers: 1, Total Odd numbers: 2

Input:
3
8
1 2 3 4 5 11 55 66
5
100 101 55 35 108
6
3 80 11 2 1 5

Output:
TestCase 0 with 8 values:
1 2 3 4 5 11 55 66
Total Even numbers: 3, Total Odd numbers: 5
TestCase 1 with 5 values:
100 101 55 35 108
Total Even numbers: 2, Total Odd numbers: 3
TestCase 2 with 6 values:
3 80 11 2 1 5
Total Even numbers: 2, Total Odd numbers: 4

229

arrays of unknown or varying size

In C, because of the framework I use and generate though a compiler, I am required to
use global variable length array. However, I can not know the size of its dimension until
runtime (though argv for example). For this reason, I would like to declare a global
variable length array with unknown size and then define its size.

I have done it like that :

int (*a)[]; //global variable length array
int main(){
 //defining it's size
 a = (int(*)[2]) malloc(sizeof(int)*2*2);

 for(int i=0;i<2; i++){
 for(int j=0;j<2; j++){
 a[i][j] = i*2 + j;
 }
 }
 return 0;
}
However, this does not work : I get the invalid use of array with unspecified
bounds error. I suspect it is because even if its size is defined, its original type does not
define the size of the larger stride.

Does someone know how to solve this issue ? Using C99 (no C++) and it should be
quite standard (working on gcc and icc at least).

EDIT: I may have forget something that matters. I am required to propose an array that
is usable through the "static array interface", I mean by that the multiple square bracket
(one per dimension).

You cannot declare a global multi dimensional VLA, because even if you use pointers,
all the dimensions except for the first one must be known at declaration time.

My best attempt would be to use a global void *. In C void * is a special pointer type that
can be used to store a pointer to any type, and is often used for opaque pointers.

Here you could do:

void *a; // opaque (global variable length array) pointer
int main() {
 //defining it's size
 a = malloc(sizeof(int) * 2 * 2); // the global opaque pointer
 int(*a22)[2] = a; // a local pointer to correct type
 for (int i = 0; i<2; i++) {

230

 for (int j = 0; j<2; j++) {
 a22[i][j] = i * 2 + j;
 }
 }
 return 0;
}
When you need to access the global VLA, you assign the value of the opaque global to
a local VLA pointer, and can then use it normally. You will probably have to store the
dimensions in global variables too...

Structures:

Purpose and usage of structures

Structure is a group of variables of different data types represented by a single name.
Lets take an example to understand the need of a structure in C programming.

Lets say we need to store the data of students like student name, age, address, id etc.
One way of doing this would be creating a different variable for each attribute, however
when you need to store the data of multiple students then in that case, you would need
to create these several variables again for each student. This is such a big headache to
store data in this way.

We can solve this problem easily by using structure. We can create a structure that has
members for name, id, address and age and then we can create the variables of this
structure for each student. This may sound confusing, do not worry we will understand
this with the help of example.

How to create a structure in C Programming

We use struct keyword to create a structure in C. The struct keyword is a short form
of structured data type.

struct struct_name {
 DataType member1_name;
 DataType member2_name;
 DataType member3_name;
 …
};

231

Here struct_name can be anything of your choice. Members data type can be same or
different. Once we have declared the structure we can use the struct name as a data
type like int, float etc.

How to declare variable of a structure?

struct struct_name var_name;
or

struct struct_name {
 DataType member1_name;
 DataType member2_name;
 DataType member3_name;
 …
} var_name;

How to access data members of a structure using a struct variable?

var_name.member1_name;
var_name.member2_name;
…

How to assign values to structure members?

There are three ways to do this.
1) Using Dot(.) operator

var_name.memeber_name = value;

2) All members assigned in one statement

struct struct_name var_name =
{value for memeber1, value for memeber2 …so on for all the members}

3) Designated initializers – We will discuss this later at the end of this post.

Example of Structure in C

#include <stdio.h>
/* Created a structure here. The name of the structure is
 * StudentData.
 */

232

struct StudentData{
 char *stu_name;
 int stu_id;
 int stu_age;
};
int main()
{
 /* student is the variable of structure StudentData*/
 struct StudentData student;

 /*Assigning the values of each struct member here*/
 student.stu_name = "Steve";
 student.stu_id = 1234;
 student.stu_age = 30;

 /* Displaying the values of struct members */
 printf("Student Name is: %s", student.stu_name);
 printf("\nStudent Id is: %d", student.stu_id);
 printf("\nStudent Age is: %d", student.stu_age);
 return 0;
}

Output:

Student Name is: Steve
Student Id is: 1234
Student Age is: 30

Nested Structure in C: Struct inside another struct

You can use a structure inside another structure, which is fairly possible. As I explained
above that once you declared a structure, the struct struct_name acts as a new data
type so you can include it in another struct just like the data type of other data members.
Sounds confusing? Don‘t worry. The following example will clear your doubt.

Example of Nested Structure in C Programming

Lets say we have two structure like this:

Structure 1: stu_address

struct stu_address
{

233

 int street;
 char *state;
 char *city;
 char *country;
}
Structure 2: stu_data

struct stu_data
{
 int stu_id;
 int stu_age;
 char *stu_name;
 struct stu_address stuAddress;
}

As you can see here that I have nested a structure inside another structure.

Assignment for struct inside struct (Nested struct)

Lets take the example of the two structure that we seen above to understand the logic

struct stu_data mydata;
mydata.stu_id = 1001;
mydata.stu_age = 30;
mydata.stuAddress.state = "UP"; //Nested struct assignment
..

How to access nested structure members?

Using chain of ―.‖ operator.
Suppose you want to display the city alone from nested struct –

printf("%s", mydata.stuAddress.city);
Use of typedef in Structure

typedef makes the code short and improves readability. In the above discussion we
have seen that while using structs every time we have to use the lengthy syntax, which
makes the code confusing, lengthy, complex and less readable. The simple solution to
this issue is use of typedef. It is like an alias of struct.

Code without typedef

struct home_address {

234

 int local_street;
 char *town;
 char *my_city;
 char *my_country;
};
...
struct home_address var;
var.town = "Agra";

Code using tyepdef

typedef struct home_address{
 int local_street;
 char *town;
 char *my_city;
 char *my_country;
}addr;
..
..
addr var1;
var.town = "Agra";

Instead of using the struct home_address every time you need to declare struct
variable, you can simply use addr, the typedef that we have defined.

Designated initializers to set values of Structure members

We have already learned two ways to set the values of a struct member, there is
another way to do the same using designated initializers. This is useful when we are
doing assignment of only few members of the structure. In the following example the
structure variable s2 has only one member assignment.

#include <stdio.h>
struct numbers
{
 int num1, num2;
};
int main()
{
 // Assignment using using designated initialization
 struct numbers s1 = {.num2 = 22, .num1 = 11};
 struct numbers s2 = {.num2 = 30};

235

 printf ("num1: %d, num2: %d\n", s1.num1, s1.num2);
 printf ("num1: %d", s2.num2);
 return 0;
}

Output:

num1: 11, num2: 22
num1: 30

declaring structures

1) Struct definition: introduces the new type struct name and defines its meaning

2) If used on a line of its own, as in struct name ;, declares but doesn't define the

struct name (see forward declaration below). In other contexts, names the previously-

declared struct, and attr-spec-seq is not allowed.

name - the name of the struct that's being defined

struct-declaration-list - any number of variable declarations, bit field declarations,

and static assert declarations. Members of incomplete type

and members of function type are not allowed (except for the

flexible array member described below)

attr-spec-seq - (C23)optional list of attributes, applied to the struct type

Explanation

Within a struct object, addresses of its elements (and the addresses of the bit field

allocation units) increase in order in which the members were defined. A pointer to a

struct can be cast to a pointer to its first member (or, if the member is a bit field, to its

allocation unit). Likewise, a pointer to the first member of a struct can be cast to a

pointer to the enclosing struct. There may be unnamed padding between any two

members of a struct or after the last member, but not before the first member. The size

of a struct is at least as large as the sum of the sizes of its members.

If a struct defines at least one named member, it is allowed to additionally

declare its last member with incomplete array type. When an element of the
(since C99)

https://en.cppreference.com/w/c/language/bit_field
https://en.cppreference.com/w/c/language/static_assert
https://en.cppreference.com/w/c/language/attributes

236

flexible array member is accessed (in an expression that uses

operator . or -> with the flexible array member's name as the right-hand-

side operand), then the struct behaves as if the array member had the

longest size fitting in the memory allocated for this object. If no additional

storage was allocated, it behaves as if an array with 1 element, except that

the behavior is undefined if that element is accessed or a pointer one past

that element is produced. Initialization, sizeof, and the assignment operator

ignore the flexible array member. Structures with flexible array members (or

unions who have a recursive-possibly structure member with flexible array

member) cannot appear as array elements or as members of other

structures.

struct s { int n; double d[]; }; // s.d is a flexible array member

 struct s t1 = { 0 }; // OK, d is as if double d[1], but UB to access

 struct s t2 = { 1, { 4.2 } }; // error: initialization ignores flexible array

 // if sizeof (double) == 8

 struct s *s1 = malloc(sizeof (struct s) + 64); // as if d was double d[8]

 struct s *s2 = malloc(sizeof (struct s) + 40); // as if d was double d[5]

 s1 = malloc(sizeof (struct s) + 10); // now as if d was double d[1]. Two

bytes excess.

 double *dp = &(s1->d[0]); // OK

 *dp = 42; // OK

 s1->d[1]++; // Undefined behavior. 2 excess bytes can't be

accessed

 // as double.

 s2 = malloc(sizeof (struct s) + 6); // same, but UB to access because 2

http://en.cppreference.com/w/c/memory/malloc
http://en.cppreference.com/w/c/memory/malloc
http://en.cppreference.com/w/c/memory/malloc
http://en.cppreference.com/w/c/memory/malloc

237

bytes are

 // missing to complete 1 double

 dp = &(s2->d[0]); // OK, can take address just fine

 *dp = 42; // undefined behavior

 *s1 = *s2; // only copies s.n, not any element of s.d

 // except those caught in sizeof (struct s)

Similar to union, an unnamed member of a struct whose type is a struct

without name is known as anonymous struct. Every member of an

anonymous struct is considered to be a member of the enclosing struct or

union. This applies recursively if the enclosing struct or union is also

anonymous.

struct v {

 union { // anonymous union

 struct { int i, j; }; // anonymous structure

 struct { long k, l; } w;

 };

 int m;

} v1;

v1.i = 2; // valid

v1.k = 3; // invalid: inner structure is not anonymous

v1.w.k = 5; // valid

Similar to union, the behavior of the program is undefined if struct is defined

without any named members (including those obtained via anonymous

(since C11)

238

nested structs or unions).

Forward declaration

A declaration of the following form

struct attr-spec-seq(optional) name ;

hides any previously declared meaning for the name name in the tag name space and

declares name as a new struct name in current scope, which will be defined later. Until

the definition appears, this struct name has incomplete type.

This allows structs that refer to each other:

struct y;

struct x { struct y *p; /* ... */ };

struct y { struct x *q; /* ... */ };

Note that a new struct name may also be introduced just by using a struct tag within

another declaration, but if a previously declared struct with the same name exists in the

tag name space, the tag would refer to that name

struct s* p = NULL; // tag naming an unknown struct declares it

struct s { int a; }; // definition for the struct pointed to by p

void g(void)

{

 struct s; // forward declaration of a new, local struct s

 // this hides global struct s until the end of this block

 struct s *p; // pointer to local struct s

 // without the forward declaration above,

 // this would point at the file-scope s

 struct s { char* p; }; // definitions of the local struct s

}

https://en.cppreference.com/w/c/language/type#Incomplete_types
https://en.cppreference.com/w/c/language/name_space
http://en.cppreference.com/w/c/types/NULL

239

Keywords

struct

Notes

See struct initialization for the rules regarding the initializers for structs.

Because members of incomplete type are not allowed, and a struct type is not complete

until the end of the definition, a struct cannot have a member of its own type. A pointer

to its own type is allowed, and is commonly used to implement nodes in linked lists or

trees.

Because a struct declaration does not establish scope, nested types, enumerations and

enumerators introduced by declarations within struct-declaration-list are visible in the

surrounding scope where the struct is defined.

Example

Run this code

#include <stddef.h>

#include <stdio.h>

int main(void)

{

 struct car { char *make; char *model; int year; }; // declares the struct type

 // declares and initializes an object of a previously-declared struct type

 struct car c = {.year=1923, .make="Nash", .model="48 Sports Touring Car"};

 printf("car: %d %s %s\n", c.year, c.make, c.model);

 // declares a struct type, an object of that type, and a pointer to it

 struct spaceship { char *make; char *model; char *year; }

 ship = {"Incom Corporation", "T-65 X-wing starfighter", "128 ABY"},

 *pship = &ship;

https://en.cppreference.com/w/c/keyword/struct
https://en.cppreference.com/w/c/language/struct_initialization
https://en.cppreference.com/w/c/language/scope
http://en.cppreference.com/w/c/io/fprintf

240

 printf("spaceship: %s %s %s\n", ship.year, ship.make, ship.model);

 // addresses increase in order of definition

 // padding may be inserted

 struct A { char a; double b; char c;};

 printf("offset of char a = %zu\noffset of double b = %zu\noffset of char c = %zu\n"

 "sizeof(struct A) = %zu\n", offsetof(struct A, a), offsetof(struct A, b),

 offsetof(struct A, c), sizeof(struct A));

 struct B { char a; char b; double c;};

 printf("offset of char a = %zu\noffset of char b = %zu\noffset of double c = %zu\n"

 "sizeof(struct B) = %zu\n", offsetof(struct B, a), offsetof(struct B, b),

 offsetof(struct B, c), sizeof(struct B));

 // A pointer to a struct can be cast to a pointer to its first member and vice versa

 char* pmake = (char*)pship;

 pship = (struct spaceship *)pmake;

}

Possible output:

car: 1923 Nash 48 Sports Touring Car

spaceship: 128 ABY Incom Corporation T-65 X-wing starfighter

offset of char a = 0

offset of double b = 8

offset of char c = 16

sizeof(struct A) = 24

offset of char a = 0

http://en.cppreference.com/w/c/io/fprintf
http://en.cppreference.com/w/c/io/fprintf
http://en.cppreference.com/w/c/types/offsetof
http://en.cppreference.com/w/c/types/offsetof
http://en.cppreference.com/w/c/types/offsetof
http://en.cppreference.com/w/c/io/fprintf
http://en.cppreference.com/w/c/types/offsetof
http://en.cppreference.com/w/c/types/offsetof
http://en.cppreference.com/w/c/types/offsetof

241

offset of char b = 1

offset of double c = 8

sizeof(struct B) = 16

assigning of structures

There is a structure type defined as below:

1

2

3

4

5

typedef struct __map_t {

 int code;

 char name[NAME_SIZE];

 char *alias;

}map_t;

If we want to assign map_t type variable struct2 to sturct1, we usually have below 3

ways:

1

2

3

4

5

6

7

8

9

10

/* Way #1: assign the members one by one */

struct1.code = struct2.code;

strncpy(struct1.name, struct2.name, NAME_SIZE);

struct1.alias = struct2.alias;

/* Way #2: memcpy the whole memory content of struct2 to struct1 */

memcpy(&struct1, &struct2, sizeof(struct1));

/* Way #3: straight assignment with '=' */

struct1 = struct2;

Consider above ways, most of programmer won‘t use way #1, since it‘s so stupid ways

compare to other twos, only if we are defining an structure assignment function.

So, what‘s the difference between way #2 and way #3? And what‘s the pitfall of the

242

structure assignment once there is array or pointer member existed? Coming sections

maybe helpful for your understanding.

The difference between ‗=‘ straight assignment and memcpy

The struct1=struct2; notation is not only more concise, but also shorter and leaves more

optimization opportunities to the compiler. The semantic meaning of = is an assignment,

while memcpy just copies memory. That‘s a huge difference in readability as well,

although memcpy does the same in this case.

Copying by straight assignment is probably best, since it‘s shorter, easier to read, and

has a higher level of abstraction. Instead of saying (to the human reader of the code)

―copy these bits from here to there‖, and requiring the reader to think about the size

argument to the copy, you‘re just doing a straight assignment (―copy this value from

here to here‖). There can be no hesitation about whether or not the size is correct.

Consider that, above source code also has pitfall about the pointer alias, it will lead

dangling pointer problem (It will be introduced below section). If we use straight

structure assignment ‗=‘ in C++, we can consider to overload the operator= function,

that can dissolve the problem, and the structure assignment usage does not need to do

any changes, but structure memcpy does not have such opportunity.

The pitfall of structure assignment:

Beware though, that copying structs that contain pointers to heap-allocated memory can

be a bit dangerous, since by doing so you‘re aliasing the pointer, and typically making it

ambiguous who owns the pointer after the copying operation.

If the structures are of compatible types, yes, you can, with something like:

1 memcpy (dest_struct, source_struct, sizeof(dest_struct));

} The only thing you need to be aware of is that this is a shallow copy. In other words, if

you have a char * pointing to a specific string, both structures will point to the same

string.

And changing the contents of one of those string fields (the data that the char points to,

not the char itself) will change the other as well. For these situations a ―deep copy‖ is

really the only choice, and that needs to go in a function. If you want a easy copy

without having to manually do each field but with the added bonus of non-shallow string

copies, use strdup:

1 memcpy (dest_struct, source_struct, sizeof (dest_struct));

243

2 dest_struct->strptr = strdup(source_struct->strptr);

This will copy the entire contents of the structure, then deep-copy the string, effectively

giving a separate string to each structure. And, if your C implementation doesn‘t have a

strdup (it‘s not part of the ISO standard), you have to allocate new memory

for dest_struct pointer member, and copy the data to memory address.

Example of trap:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define NAME_SIZE 16

typedef struct _map_t {

 int code;

 char name[NAME_SIZE];

 char *alias;

} map_t;

int main()

{

 map_t a, b, c;

 /* initialize the a's members value */

 a.code = 1024;

 snprintf(a.name, NAME_SIZE, "Controller SW3");

 char *alias = "RNC&IPA";

 a.alias = alias;

244

21

22

23

24

25

26

27

28

 /* assign the value via memcpy */

 memcpy(&b, &a, sizeof(b));

 /* assign the value via '=' */

 c = a;

 return 0;

}

Below diagram illustrates above source memory layout, if there is a pointer field

member, either the straight assignment or memcpy, that will be alias of pointer to point

same address. For example, b.alias and c.alias both points to address of a.alias. Once

one of them free the pointed address, it will cause another pointer as dangling

pointer. It‘s dangerous!!

245

Conclusion

Recommend use straight assignment ‗=‘ instead of memcpy.

If structure has pointer or array member, please consider the pointer alias problem, it

will lead dangling pointer once incorrect use. Better way is implement structure

assignment function in C, and overload the operator= function in C++.

to Objects:

Pointer and address arithmetic

Pointers variables are also known as address data types because they are used to store
the address of another variable. The address is the memory location that is assigned to
the variable. It doesn‘t store any value.
Hence, there are only a few operations that are allowed to perform on Pointers in C
language. The operations are slightly different from the ones that we generally use for
mathematical calculations. The operations are:

1. Increment/Decrement of a Pointer

2. Addition of integer to a pointer

3. Subtraction of integer to a pointer

4. Subtracting two pointers of the same type

Increment/Decrement of a Pointer

Increment: It is a condition that also comes under addition. When a pointer is
incremented, it actually increments by the number equal to the size of the data type for
which it is a pointer.

For Example:

If an integer pointer that stores address 1000 is incremented, then it will increment by
2(size of an int) and the new address it will points to 1002. While if a float type pointer is
incremented then it will increment by 4(size of a float) and the new address will be 1004.
Decrement: It is a condition that also comes under subtraction. When a pointer is
decremented, it actually decrements by the number equal to the size of the data type for
which it is a pointer.

For Example:

If an integer pointer that stores address 1000 is decremented, then it will decrement by

https://www.geeksforgeeks.org/pointers-in-c-and-c-set-1-introduction-arithmetic-and-array/
https://www.geeksforgeeks.org/pointers-c-examples/
https://www.geeksforgeeks.org/pointers-c-examples/

246

2(size of an int) and the new address it will points to 998. While if a float type pointer is
decremented then it will decrement by 4(size of a float) and the new address will be 996.
Below is the program to illustrate pointer increment/decrement:

filter_none
edit
play_arrow
brightness_4

// C program to illustrate
// pointer increment/decrement

#include <stdio.h>

// Driver Code
int main()
{
 // Integer variable
 int N = 4;

 // Pointer to an integer
 int *ptr1, *ptr2;

 // Pointer stores
 // the address of N
 ptr1 = &N;
 ptr2 = &N;

 printf("Pointer ptr1 "
 "before Increment: ");
 printf("%p \n", ptr1);

 // Incrementing pointer ptr1;
 ptr1++;

 printf("Pointer ptr1 after"
 " Increment: ");
 printf("%p \n\n", ptr1);

 printf("Pointer ptr1 before"
 " Decrement: ");
 printf("%p \n", ptr1);

 // Decrementing pointer ptr1;
 ptr1--;

247

 printf("Pointer ptr1 after"
 " Decrement: ");
 printf("%p \n\n", ptr1);

 return 0;
}

Output:

Pointer ptr1 before Increment: 0x7ffcb19385e4

Pointer ptr1 after Increment: 0x7ffcb19385e8

Pointer ptr1 before Decrement: 0x7ffcb19385e8

Pointer ptr1 after Decrement: 0x7ffcb19385e4

Addition

When a pointer is added with a value, the value is first multiplied by the size of data type
and then added to the pointer.

filter_none
edit
play_arrow
brightness_4

// C program to illustrate pointer Addition
#include <stdio.h>

// Driver Code
int main()
{
 // Integer variable
 int N = 4;

 // Pointer to an integer
 int *ptr1, *ptr2;

 // Pointer stores the address of N
 ptr1 = &N;
 ptr2 = &N;

 printf("Pointer ptr2 before Addition: ");
 printf("%p \n", ptr2);

248

 // Addition of 3 to ptr2
 ptr2 = ptr2 + 3;
 printf("Pointer ptr2 after Addition: ");
 printf("%p \n", ptr2);

 return 0;
}

Output:

Pointer ptr2 before Addition: 0x7fffffdcd984

Pointer ptr2 after Addition: 0x7fffffdcd990

Subtraction

When a pointer is subtracted with a value, the value is first multiplied by the size of the
data type and then subtracted from the pointer.

Below is the program to illustrate pointer Subtraction:

filter_none
edit
play_arrow
brightness_4

// C program to illustrate pointer Subtraction
#include <stdio.h>

// Driver Code
int main()
{
 // Integer variable
 int N = 4;

 // Pointer to an integer
 int *ptr1, *ptr2;

 // Pointer stores the address of N
 ptr1 = &N;
 ptr2 = &N;

 printf("Pointer ptr2 before Subtraction: ");
 printf("%p \n", ptr2);

 // Subtraction of 3 to ptr2
 ptr2 = ptr2 - 3;
 printf("Pointer ptr2 after Subtraction: ");

249

 printf("%p \n", ptr2);

 return 0;
}

Output:

Pointer ptr2 before Subtraction: 0x7ffcf1221b24

Pointer ptr2 after Subtraction: 0x7ffcf1221b18

Subtraction of Two Pointers

The subtraction of two pointers is possible only when they have the same data type. The
result is generated by calculating the difference between the addresses of the two
pointers and calculating how many bits of data it is according to the pointer data type. The
subtraction of two pointers gives the increments between the two pointers.

For Example:

Two integer pointers say ptr1(address:1000) and ptr2(address:1016) are subtracted.
The difference between address is 16 bytes. Since the size of int is 2 bytes, therefore
the increment between ptr1 and ptr2 is given by (16/2) = 8.
Below is the implementation to illustrate the Subtraction of Two Pointers:

filter_none
edit
play_arrow
brightness_4

// C program to illustrate Subtraction
// of two pointers
#include <stdio.h>

// Driver Code
int main()
{
 int x;

 // Integer variable
 int N = 4;

 // Pointer to an integer
 int *ptr1, *ptr2;

 // Pointer stores the address of N

250

 ptr1 = &N;
 ptr2 = &N;

 // Incrementing ptr2 by 3
 ptr2 = ptr2 + 3;

 // Subtraction of ptr2 and ptr1
 x = ptr2 - ptr1;

 // Print x to get the Increment
 // between ptr1 and ptr2
 printf("Subtraction of ptr1 "
 "& ptr2 is %d\n",
 x);

 return 0;
}

Output:

Subtraction of ptr1 & ptr2 is 3

Pointer Arthemetic on Arrays:

Pointers contain addresses. Adding two addresses makes no sense because there is no
idea what it would point to. Subtracting two addresses lets you compute the offset
between the two addresses. An array name acts like a pointer constant. The value of this
pointer constant is the address of the first element. For Example: if an array named arr
then arr and &arr[0] can be used to reference array as a pointer.
Below is the program to illustrate the Pointer Arithmetic on arrays:

Program 1:

filter_none
edit
play_arrow
brightness_4

// C program to illustrate the array
// traversal using pointers
#include <stdio.h>

// Driver Code
int main()
{

 int N = 5;

251

 // An array
 int arr[] = { 1, 2, 3, 4, 5 };

 // Declare pointer variable
 int* ptr;

 // Point the pointer to first
 // element in array arr[]
 ptr = arr;

 // Traverse array using ptr
 for (int i = 0; i < N; i++) {

 // Print element at which
 // ptr points
 printf("%d ", ptr[0]);
 ptr++;
 }
}

Output:

1 2 3 4 5

Program 2:

filter_none
edit
play_arrow
brightness_4

// C program to illustrate the array
// traversal using pointers in 2D array
#include <stdio.h>

// Function to traverse 2D array
// using pointers
void traverseArr(int* arr,
 int N, int M)
{

 int i, j;

 // Travere rows of 2D matrix
 for (i = 0; i < N; i++) {

252

 // Travere columns of 2D matrix
 for (j = 0; j < M; j++) {

 // Print the element
 printf("%d ", *((arr + i * M) + j));
 }
 printf("\n");
 }
}

// Driver Code
int main()
{

 int N = 3, M = 2;

 // A 2D array
 int arr[][2] = { { 1, 2 },
 { 3, 4 },
 { 5, 6 } };

 // Function Call
 traverseArr((int*)arr, N, M);
 return 0;
}

Output:

1 2

3 4

5 6

pointer operations and declarations

Pointers are the special type of data types which stores memory address (reference) of
another variable. Here we will learn how to declare and initialize a pointer variable with
the address of another variable?

Pointer Declarations

Pointer declaration is similar to other type of variable except asterisk (*) character
before pointer variable name.

253

Here is the syntax to declare a pointer

data_type *poiter_name;

Let's consider with following example statement

int *ptr;

Here, in this statement

 ptr is the name of pointer variable (name of the memory blocks in which address
of another variable is going to be stored).

 The character asterisk (*) tells to the compiler that the identifier ptr should be
declare as pointer.

 The data type int tells to the compiler that pointer ptr will store memory address
of integer type variable.

Finally, ptr will be declared as integer pointer which will store address of integer type
variable.

Pointer ptr is declared, but it not pointing to anything; now pointer should be initialized
by the address of another integer variable.

Consider the following statement of pointer initialization

int x;
int *ptr;
ptr=&x;

Here, x is an integer variable and pointer ptr is initiating with the address of x.

Accessing address and value of x using pointer variable ptr

We can get the value of ptr which is the address of x (an integer variable)

 ptr will print the stored value (memory address of x).

 *ptr will print the value which is stored at the containing memory address in
the ptr (value of variable x).

Here is the simple example to demonstrate pointer declaration, initialization and
accessing address, value through pointer variable:

254

#include <stdio.h>
int main()
{
 int x=20; //int variable
 int *ptr; //int pointer declaration

 ptr=&x; //initializing pointer

 printf("Memory address of x: %p\n",ptr);
 printf("Value x: %d\n",*ptr);

 return 0;
}

 Memory address of x: 0x7ffe64f5c814
 Value x: 20

using pointers as function arguments

In this tutorial, you will learn how to pass a pointer to a function as an argument. To
understand this concept you must have a basic idea of Pointers and functions in C
programming.

Just like any other argument, pointers can also be passed to a function as an argument.
Lets take an example to understand how this is done.

Example: Passing Pointer to a Function in C Programming

In this example, we are passing a pointer to a function. When we pass a pointer as an
argument instead of a variable then the address of the variable is passed instead of the
value. So any change made by the function using the pointer is permanently made at
the address of passed variable. This technique is known as call by reference in C.

Try this same program without pointer, you would find that the bonus amount will not
reflect in the salary, this is because the change made by the function would be done to
the local variables of the function. When we use pointers, the value is changed at the
address of variable

#include <stdio.h>
void salaryhike(int *var, int b)
{
 *var = *var+b;
}

https://beginnersbook.com/2014/01/c-pointers/
https://beginnersbook.com/2014/01/c-functions-examples/
https://beginnersbook.com/2014/01/c-functions-examples/

255

int main()
{
 int salary=0, bonus=0;
 printf("Enter the employee current salary:");
 scanf("%d", &salary);
 printf("Enter bonus:");
 scanf("%d", &bonus);
 salaryhike(&salary, bonus);
 printf("Final salary: %d", salary);
 return 0;
}

Output:

Enter the employee current salary:10000
Enter bonus:2000
Final salary: 12000

Example 2: Swapping two numbers using Pointers

This is one of the most popular example that shows how to swap numbers using call by
reference.

Try this program without pointers, you would see that the numbers are not swapped.
The reason is same that we have seen above in the first example.

#include <stdio.h>
void swapnum(int *num1, int *num2)
{
 int tempnum;

 tempnum = *num1;
 *num1 = *num2;
 *num2 = tempnum;
}
int main()
{
 int v1 = 11, v2 = 77 ;
 printf("Before swapping:");
 printf("\nValue of v1 is: %d", v1);
 printf("\nValue of v2 is: %d", v2);

 /*calling swap function*/

256

 swapnum(&v1, &v2);

 printf("\nAfter swapping:");
 printf("\nValue of v1 is: %d", v1);
 printf("\nValue of v2 is: %d", v2);
}

Output:

Before swapping:
Value of v1 is: 11
Value of v2 is: 77
After swapping:
Value of v1 is: 77
Value of v2 is: 11

Dynamic memory allocation

The concept of dynamic memory allocation in c language enables the C programmer
to allocate memory at runtime. Dynamic memory allocation in c language is possible by
4 functions of stdlib.h header file.

1. malloc()

2. calloc()

3. realloc()

4. free()

Before learning above functions, let's understand the difference between static memory
allocation and dynamic memory allocation.

static memory allocation dynamic memory allocation

memory is allocated at compile time. memory is allocated at run time.

memory can't be increased while

executing program.

memory can be increased while

executing program.

used in array. used in linked list.

Now let's have a quick look at the methods used for dynamic memory allocation.

257

malloc() allocates single block of requested memory.

calloc() allocates multiple block of requested memory.

realloc() reallocates the memory occupied by malloc() or calloc() functions.

free() frees the dynamically allocated memory.

malloc() function in C

The malloc() function allocates single block of requested memory.

It doesn't initialize memory at execution time, so it has garbage value initially.

It returns NULL if memory is not sufficient.

The syntax of malloc() function is given below:

1. ptr=(cast-type*)malloc(byte-size)

Let's see the example of malloc() function.

1. #include<stdio.h>

2. #include<stdlib.h>

3. int main(){

4. int n,i,*ptr,sum=0;

5. printf("Enter number of elements: ");

6. scanf("%d",&n);

7. ptr=(int*)malloc(n*sizeof(int)); //memory allocated using malloc

8. if(ptr==NULL)

9. {

10. printf("Sorry! unable to allocate memory");

11. exit(0);

12. }

13. printf("Enter elements of array: ");

14. for(i=0;i<n;++i)

15. {

16. scanf("%d",ptr+i);

17. sum+=*(ptr+i);

18. }

19. printf("Sum=%d",sum);

20. free(ptr);

21. return 0;

22. }

258

Output

Enter elements of array: 3
Enter elements of array: 10
10
10
Sum=30

calloc() function in C

The calloc() function allocates multiple block of requested memory.

It initially initialize all bytes to zero.

It returns NULL if memory is not sufficient.

The syntax of calloc() function is given below:

1. ptr=(cast-type*)calloc(number, byte-size)

Let's see the example of calloc() function.

1. #include<stdio.h>

2. #include<stdlib.h>

3. int main(){

4. int n,i,*ptr,sum=0;

5. printf("Enter number of elements: ");

6. scanf("%d",&n);

7. ptr=(int*)calloc(n,sizeof(int)); //memory allocated using calloc

8. if(ptr==NULL)

9. {

10. printf("Sorry! unable to allocate memory");

11. exit(0);

12. }

13. printf("Enter elements of array: ");

14. for(i=0;i<n;++i)

15. {

16. scanf("%d",ptr+i);

17. sum+=*(ptr+i);

18. }

19. printf("Sum=%d",sum);

20. free(ptr);

21. return 0;

22. }

259

Output

Enter elements of array: 3
Enter elements of array: 10
10
10
Sum=30

realloc() function in C

If memory is not sufficient for malloc() or calloc(), you can reallocate the memory by
realloc() function. In short, it changes the memory size.

Let's see the syntax of realloc() function.

1. ptr=realloc(ptr, new-size)

free() function in C

The memory occupied by malloc() or calloc() functions must be released by calling
free() function. Otherwise, it will consume memory until program exit.

Let's see the syntax of free() function.

1. free(ptr)

defining and using stacks and linked lists

Stack as we know is a Last In First Out(LIFO) data structure. It has the following
operations :

 push: push an element into the stack

 pop: remove the last element added

 top: returns the element at top of stack

260

Implementation of Stack using Linked List

Stacks can be easily implemented using a linked list. Stack is a data structure to which
a data can be added using the push() method and data can be removed from it using
the pop() method. With Linked list, the push operation can be replaced by
the addAtFront() method of linked list and pop operation can be replaced by a function
which deletes the front node of the linked list.

In this way our Linked list will virtually become a Stack with push() and pop() methods.

First we create a class node. This is our Linked list node class which will have data in it
and a node pointer to store the address of the next node element.

class node

{

 int data;

 node *next;

};

261

Then we define our stack class,

class Stack

{

 node *front; // points to the head of list

 public:

 Stack()

 {

 front = NULL;

 }

 // push method to add data element

 void push(int);

 // pop method to remove data element

 void pop();

 // top method to return top data element

 int top();

};

Inserting Data in Stack (Linked List)

In order to insert an element into the stack, we will create a node and place it in front of
the list.

void Stack :: push(int d)

{

 // creating a new node

 node *temp;

 temp = new node();

262

 // setting data to it

 temp->data = d;

 // add the node in front of list

 if(front == NULL)

 {

 temp->next = NULL;

 }

 else

 {

 temp->next = front;

 }

 front = temp;

}

Now whenever we will call the push() function a new node will get added to our list in
the front, which is exactly how a stack behaves.

Removing Element from Stack (Linked List)

In order to do this, we will simply delete the first node, and make the second node, the
head of the list.

void Stack :: pop()

{

 // if empty

 if(front == NULL)

 cout << "UNDERFLOW\n";

 // delete the first element

263

 else

 {

 node *temp = front;

 front = front->next;

 delete(temp);

 }

}

Return Top of Stack (Linked List)

In this, we simply return the data stored in the head of the list.

int Stack :: top()

{

 return front->data;

}

Conclusion

When we say "implementing Stack using Linked List", we mean how we can make a
Linked List behave like a Stack, after all they are all logical entities. So for any data
structure to act as a Stack, it should have push() method to add data on top
and pop() method to remove data from top. Which is exactly what we did and hence
accomplished to make a Linked List behave as a Stack.

264

UNIT V

Sequential search

When data items are stored in a collection such as a list, we say that they have a linear
or sequential relationship. Each data item is stored in a position relative to the others. In
Python lists, these relative positions are the index values of the individual items. Since
these index values are ordered, it is possible for us to visit them in sequence. This
process gives rise to our first searching technique, the sequential search.

The diagram below shows how this search works. Starting at the first item in the list, we
simply move from item to item, following the underlying sequential ordering until we
either find what we are looking for or run out of items. If we run out of items, we have
discovered that the item we were searching for was not present.

Sequential search of a list of integers

The Python implementation for this algorithm is shown below. The function needs the
list and the item we are looking for and returns a boolean value as to whether it is
present. Remember in practice we would use the Python in operator for this purpose, so
you can think of the below algorithm as what we would do if in were not provided for us.

def sequential_search(alist, item):
 position = 0

 while position < len(alist):
 if alist[position] == item:
 return True
 position = position + 1

 return False

testlist = [1, 2, 32, 8, 17, 19, 42, 13, 0]

sequential_search(testlist, 3) # => False

265

sequential_search(testlist, 13) # => True

Analysis of Sequential Search

To analyze searching algorithms, we need to decide on a basic unit of computation.
Recall that this is typically the common step that must be repeated in order to solve the
problem. For searching, it makes sense to count the number of comparisons performed.
Each comparison may or may not discover the item we are looking for. In addition, we
make another assumption here. The list of items is not ordered in any way. The items
have been placed randomly into the list. In other words, the probability that the item we
are looking for is in any particular position is exactly the same for each position of the
list.

If the item is not in the list, the only way to know it is to compare it against every item
present. If there are nn items, then the sequential search requires nn comparisons to
discover that the item is not there. In the case where the item is in the list, the analysis
is not so straightforward. There are actually three different scenarios that can occur. In
the best case we will find the item in the first place we look, at the beginning of the list.
We will need only one comparison. In the worst case, we will not discover the item until
the very last comparison, the nth comparison.

What about the average case? On average, we will find the item about halfway into the
list; that is, we will compare against \frac{n}{2}2n items. Recall, however, that as n gets
large, the coefficients, no matter what they are, become insignificant in our
approximation, so the complexity of the sequential search, is O(n)O(n):

Case Best Case Worst Case Average Case

item is present 11 nn \frac{n}{2}2n

item is not present nn nn nn

We assumed earlier that the items in our collection had been randomly placed so that
there is no relative order between the items. What would happen to the sequential
search if the items were ordered in some way? Would we be able to gain any efficiency
in our search technique?

Assume that the list of items was constructed so that the items were in ascending order,
from low to high. If the item we are looking for is present in the list, the chance of it
being in any one of the n positions is still the same as before. We will still have the
same number of comparisons to find the item. However, if the item is not present there
is a slight advantage. The diagram below shows this process as the algorithm looks for
the item 50. Notice that items are still compared in sequence until 54. At this point,

266

however, we know something extra. Not only is 54 not the item we are looking for, but
no other elements beyond 54 can work either since the list is sorted.

Sequential search of an ordered list of integers

In this case, the algorithm does not have to continue looking through all of the items to
report that the item was not found. It can stop immediately. The code below shows this
variation of the sequential search function.

def ordered_sequential_search(alist, item):
 position = 0

 while position < len(alist):
 if alist[position] == item:
 return True

 if alist[position] > item:
 return False

 position = position + 1

 return False

testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
ordered_sequential_search(testlist, 3) # => False
ordered_sequential_search(testlist, 13) # => True

The table below summarizes these results. Note that in the best case we might discover
that the item is not in the list by looking at only one item. On average, we will know after
looking through only \frac {n}{2}2n items. However, this technique is still O(n)O(n). In
summary, a sequential search is improved by ordering the list only in the case where we
do not find the item.

267

Case Best Case Worst Case Average Case

item is present 11 nn \frac{n}{2}2n

item is not present nn nn \frac{n}{2}2n

Sorting arrays

sort() method is a java.util.Arrays class method.
Syntax:

public static void sort(int[] arr, int from_Index, int to_Index)

arr - the array to be sorted
from_Index - the index of the first element, inclusive, to be sorted
to_Index - the index of the last element, exclusive, to be sorted

This method doesn't return any value.

A Java program to sort an array of integers in ascending order.

 Java
filter_none
edit
play_arrow
brightness_4

// A sample Java program to sort an array of integers
// using Arrays.sort(). It by default sorts in
// ascending order
import java.util.Arrays;

public class SortExample
{
 public static void main(String[] args)
 {
 // Our arr contains 8 elements
 int[] arr = {13, 7, 6, 45, 21, 9, 101, 102};

 Arrays.sort(arr);

https://www.geeksforgeeks.org/array-class-in-java/

268

 System.out.printf("Modified arr[] : %s",
 Arrays.toString(arr));
 }
}
Output:

Modified arr[] : [6, 7, 9, 13, 21, 45, 101, 102]

We can also use sort() to sort a subarray of arr[]

 Java
filter_none
edit
play_arrow
brightness_4

// A sample Java program to sort a subarray
// using Arrays.sort().
import java.util.Arrays;

public class SortExample
{
 public static void main(String[] args)
 {
 // Our arr contains 8 elements
 int[] arr = {13, 7, 6, 45, 21, 9, 2, 100};

 // Sort subarray from index 1 to 4, i.e.,
 // only sort subarray {7, 6, 45, 21} and
 // keep other elements as it is.
 Arrays.sort(arr, 1, 5);

 System.out.printf("Modified arr[] : %s",
 Arrays.toString(arr));
 }
}
Output:

Modified arr[] : [13, 6, 7, 21, 45, 9, 2, 100]

We can also sort in descending order.

269

 Java
filter_none
edit
play_arrow
brightness_4

// A sample Java program to sort a subarray
// in descending order using Arrays.sort().
import java.util.Arrays;
import java.util.Collections;

public class SortExample
{
 public static void main(String[] args)
 {
 // Note that we have Integer here instead of
 // int[] as Collections.reverseOrder doesn't
 // work for primitive types.
 Integer[] arr = {13, 7, 6, 45, 21, 9, 2, 100};

 // Sorts arr[] in descending order
 Arrays.sort(arr, Collections.reverseOrder());

 System.out.printf("Modified arr[] : %s",
 Arrays.toString(arr));
 }
}
Output:

Modified arr[] : [100, 45, 21, 13, 9, 7, 6, 2]

We can also sort strings in alphabetical order.

 Java
filter_none
edit
play_arrow
brightness_4

// A sample Java program to sort an array of strings
// in ascending and descending orders using Arrays.sort().
import java.util.Arrays;
import java.util.Collections;

public class SortExample
{

270

 public static void main(String[] args)
 {
 String arr[] = {"practice.geeksforgeeks.org",
 "quiz.geeksforgeeks.org",
 "code.geeksforgeeks.org"
 };

 // Sorts arr[] in ascending order
 Arrays.sort(arr);
 System.out.printf("Modified arr[] : \n%s\n\n",
 Arrays.toString(arr));

 // Sorts arr[] in descending order
 Arrays.sort(arr, Collections.reverseOrder());

 System.out.printf("Modified arr[] : \n%s\n\n",
 Arrays.toString(arr));
 }
}
Output:

Modified arr[] :

Modified arr[] :

[quiz.geeksforgeeks.org, practice.geeksforgeeks.org, code.geeksforgeeks.org]

We can also sort an array according to user defined criteria.
We use Comparator interface for this purpose. Below is an example.

 Java
filter_none
edit
play_arrow
brightness_4

// Java program to demonstrate working of Comparator
// interface
import java.util.*;
import java.lang.*;
import java.io.*;

https://www.geeksforgeeks.org/comparator-interface-java/

271

// A class to represent a student.
class Student
{
 int rollno;
 String name, address;

 // Constructor
 public Student(int rollno, String name,
 String address)
 {
 this.rollno = rollno;
 this.name = name;
 this.address = address;
 }

 // Used to print student details in main()
 public String toString()
 {
 return this.rollno + " " + this.name +
 " " + this.address;
 }
}

class Sortbyroll implements Comparator<Student>
{
 // Used for sorting in ascending order of
 // roll number
 public int compare(Student a, Student b)
 {
 return a.rollno - b.rollno;
 }
}

// Driver class
class Main
{
 public static void main (String[] args)
 {
 Student [] arr = {new Student(111, "bbbb", "london"),
 new Student(131, "aaaa", "nyc"),
 new Student(121, "cccc", "jaipur")};

 System.out.println("Unsorted");
 for (int i=0; i<arr.length; i++)
 System.out.println(arr[i]);

272

 Arrays.sort(arr, new Sortbyroll());

 System.out.println("\nSorted by rollno");
 for (int i=0; i<arr.length; i++)
 System.out.println(arr[i]);
 }
}
Output:

Unsorted

111 bbbb london

131 aaaa nyc

121 cccc jaipur

Sorted by rollno

111 bbbb london

121 cccc jaipur

131 aaaa nyc

Strings

Strings are actually one-dimensional array of characters terminated by a null character
'\0'. Thus a null-terminated string contains the characters that comprise the string
followed by a null.

The following declaration and initialization create a string consisting of the word "Hello".
To hold the null character at the end of the array, the size of the character array
containing the string is one more than the number of characters in the word "Hello."

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

If you follow the rule of array initialization then you can write the above statement as
follows −

char greeting[] = "Hello";

Following is the memory presentation of the above defined string in C/C++ −

273

Actually, you do not place the null character at the end of a string constant. The C
compiler automatically places the '\0' at the end of the string when it initializes the
array. Let us try to print the above mentioned string −

Live Demo

#include <stdio.h>

int main () {

 char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};
 printf("Greeting message: %s\n", greeting);
 return 0;
}

When the above code is compiled and executed, it produces the following result −

Greeting message: Hello

C supports a wide range of functions that manipulate null-terminated strings −

Sr.No. Function & Purpose

1
strcpy(s1, s2);

Copies string s2 into string s1.

2
strcat(s1, s2);

http://tpcg.io/P0muN5

274

Concatenates string s2 onto the end of string s1.

3
strlen(s1);

Returns the length of string s1.

4
strcmp(s1, s2);

Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.

5
strchr(s1, ch);

Returns a pointer to the first occurrence of character ch in string s1.

6
strstr(s1, s2);

Returns a pointer to the first occurrence of string s2 in string s1.

The following example uses some of the above-mentioned functions –

#include <stdio.h>
#include <string.h>

int main () {

 char str1[12] = "Hello";
 char str2[12] = "World";
 char str3[12];
 int len ;

 /* copy str1 into str3 */
 strcpy(str3, str1);
 printf("strcpy(str3, str1) : %s\n", str3);

 /* concatenates str1 and str2 */
 strcat(str1, str2);
 printf("strcat(str1, str2): %s\n", str1);

 /* total lenghth of str1 after concatenation */
 len = strlen(str1);
 printf("strlen(str1) : %d\n", len);

 return 0;

275

}

When the above code is compiled and executed, it produces the following result −

strcpy(str3, str1) : Hello
strcat(str1, str2): HelloWorld
strlen(str1) : 10

Text files

A text file is a computer file that only contains text and has no special formatting such

as bold text, italic text, images, etc. With Microsoft Windows computers text files are

identified with the .txt file extension, as shown in the example picture.

An example of a text file and ASCII art is shown in the Kirk text file. You can click this

link to open the .txt file in your browser or right-click the file to save the text file to your

computer.

How to open a text file?

A text file can be opened in any text editor or word processor. For example, in Microsoft

Windows, you can use the Notepad program to open, view, and edit text files.

The Standard C Preprocessor:

Defining and calling macros

In a C program, all lines that start with # are processed by preprocessor which is a special
program invoked by the compiler. In a very basic term, preprocessor takes a C program
and produces another C program without any #.
The following are some interesting facts about preprocessors in C.

1) When we use include directive, the contents of included header file (after
preprocessing) are copied to the current file.
Angular brackets < and > instruct the preprocessor to look in the standard folder where all
header files are held. Double quotes ― and ― instruct the preprocessor to look into the
current folder (current directory).

2) When we use define for a constant, the preprocessor produces a C program where the
defined constant is searched and matching tokens are replaced with the given
expression. For example in the following program max is defined as 100.

 C

https://www.computerhope.com/jargon/f/file.htm
https://www.computerhope.com/jargon/t/text.htm
https://www.computerhope.com/jargon/b/bold.htm
https://www.computerhope.com/jargon/i/italic.htm
https://www.computerhope.com/jargon/a/asciiart.htm
https://www.computerhope.com/jargon/a/kirk.txt
https://www.computerhope.com/jargon/r/righclic.htm
https://www.computerhope.com/jargon/e/editor.htm
https://www.computerhope.com/jargon/w/word-processor.htm
https://www.computerhope.com/jargon/n/notepad.htm

276

filter_none
edit
play_arrow
brightness_4

#include<stdio.h>
#define max 100
int main()
{
 printf("max is %d", max);
 return 0;
}
Output:

max is 100

3) The macros can take function like arguments, the arguments are not checked for data
type. For example, the following macro INCREMENT(x) can be used for x of any data
type.

 C
filter_none
edit
play_arrow
brightness_4

#include <stdio.h>
#define INCREMENT(x) ++x
int main()
{
 char *ptr = "GeeksQuiz";
 int x = 10;

277

 printf("%s ", INCREMENT(ptr));
 printf("%d", INCREMENT(x));
 return 0;
}

Output:

eeksQuiz 11

4) The macro arguments are not evaluated before macro expansion. For example,
consider the following program

 C
filter_none
edit
play_arrow
brightness_4

#include <stdio.h>
#define MULTIPLY(a, b) a*b
int main()
{
 // The macro is expanded as 2 + 3 * 3 + 5, not as 5*8
 printf("%d", MULTIPLY(2+3, 3+5));
 return 0;
}
// Output: 16

Output:

16

278

The previous problem can be solved using following program

 C
filter_none
edit
play_arrow
brightness_4

#include <stdio.h>
//here, instead of writing a*a we write (a)*(b)
#define MULTIPLY(a, b) (a)*(b)
int main()
{
 // The macro is expanded as (2 + 3) * (3 + 5), as 5*8
 printf("%d", MULTIPLY(2+3, 3+5));
 return 0;
}
// This code is contributed by Santanu

Output:

40

5) The tokens passed to macros can be concatenated using operator ## called Token-
Pasting operator.

 C

279

filter_none
edit
play_arrow
brightness_4

#include <stdio.h>
#define merge(a, b) a##b
int main()
{
 printf("%d ", merge(12, 34));
}
Output:

1234

6) A token passed to macro can be converted to a string literal by using # before it.

 C
filter_none
edit
play_arrow
brightness_4

#include <stdio.h>
#define get(a) #a
int main()
{
 // GeeksQuiz is changed to "GeeksQuiz"
 printf("%s", get(GeeksQuiz));
}

Output:

280

GeeksQuiz

7) The macros can be written in multiple lines using ‗\‘. The last line doesn‘t need to have
‗\‘.

 C
filter_none
edit
play_arrow
brightness_4

#include <stdio.h>
#define PRINT(i, limit) while (i < limit) \
 { \
 printf("GeeksQuiz "); \
 i++; \
 }
int main()
{
 int i = 0;
 PRINT(i, 3);
 return 0;
}

Output:

GeeksQuiz GeeksQuiz GeeksQuiz

281

8) The macros with arguments should be avoided as they cause problems sometimes.
And Inline functions should be preferred as there is type checking parameter evaluation in
inline functions. From C99 onward, inline functions are supported by C language also.
For example consider the following program. From first look the output seems to be 1, but
it produces 36 as output.

 C
filter_none
edit
play_arrow
brightness_4

#include <stdio.h>

#define square(x) x*x
int main()
{
 // Expanded as 36/6*6
 int x = 36/square(6);
 printf("%d", x);
 return 0;
}

Output:

36

http://en.wikipedia.org/wiki/C99

282

If we use inline functions, we get the expected output. Also, the program given in point 4
above can be corrected using inline functions.

 C
filter_none
edit
play_arrow
brightness_4

#include <stdio.h>

static inline int square(int x) { return x*x; }
int main()
{
int x = 36/square(6);
printf("%d", x);
return 0;
}

Output:

1

9) Preprocessors also support if-else directives which are typically used for conditional
compilation.

 C
filter_none
edit
play_arrow
brightness_4

int main()

283

{
#if VERBOSE >= 2
 printf("Trace Message");
#endif
}

Output:

No Output

10) A header file may be included more than one time directly or indirectly, this leads to
problems of redeclaration of same variables/functions. To avoid this problem, directives
like defined, ifdef and ifndef are used.
11) There are some standard macros which can be used to print program file (__FILE__),
Date of compilation (__DATE__), Time of compilation (__TIME__) and Line Number in C
code (__LINE__)

 C
filter_none
edit
play_arrow
brightness_4

#include <stdio.h>

int main()
{
 printf("Current File :%s\n", __FILE__);
 printf("Current Date :%s\n", __DATE__);
 printf("Current Time :%s\n", __TIME__);
 printf("Line Number :%d\n", __LINE__);
 return 0;
}
Output:

284

Current File
:/usr/share/IDE_PROGRAMS/C/other/081c548d50135ed88cfa0296159b05ca/081c548d
50135ed88cfa0296159b05ca.c

Current Date :Sep 4 2019

Current Time :10:17:43

Line Number :8

12) We can remove already defined macros using :
#undef MACRO_NAME

 C
filter_none
edit
play_arrow
brightness_4

#include <stdio.h>
#define LIMIT 100
int main()
{
 printf("%d",LIMIT);
 //removing defined macro LIMIT
 #undef LIMIT
 //Next line causes error as LIMIT is not defined
 printf("%d",LIMIT);
 return 0;
}
//This code is contributed by Santanu
Following program is executed correctly as we have declared LIMIT as an integer
variable after removing previously defined macro LIMIT

285

 C
filter_none
edit
play_arrow
brightness_4

#include <stdio.h>
#define LIMIT 1000
int main()
{
 printf("%d",LIMIT);
 //removing defined macro LIMIT
 #undef LIMIT
 //Declare LIMIT as integer again
 int LIMIT=1001;
 printf("\n%d",LIMIT);
 return 0;
}

Output:

1000

1001

Another interesting fact about macro using (#undef)

 C
filter_none
edit
play_arrow
brightness_4

#include <stdio.h>
//div function prototype

286

float div(float, float);
#define div(x, y) x/y

int main()
{
//use of macro div
//Note: %0.2f for taking two decimal value after point
printf("%0.2f",div(10.0,5.0));
//removing defined macro div
#undef div
//function div is called as macro definition is removed
printf("\n%0.2f",div(10.0,5.0));
return 0;
}

//div function definition
float div(float x, float y){
return y/x;
}
//This code is contributed by Santanu

Output:

2.00

0.50

utilizing conditional compilation

The last preprocessor directive we're going to look at is #ifdef. If you have the sequence

 #ifdef name
 program text
 #else

287

 more program text
 #endif

in your program, the code that gets compiled depends on whether a preprocessor
macro by that name is defined or not. If it is (that is, if there has been a #define line for a
macro called name), then ``program text'' is compiled and ``more program text'' is
ignored. If the macro is not defined, ``more program text'' is compiled and ``program
text'' is ignored. This looks a lot like an if statement, but it behaves completely
differently: an if statement controls which statements of your program are executed at
run time, but #ifdef controls which parts of your program actually get compiled.

Just as for the if statement, the #else in an #ifdef is optional. There is a companion
directive #ifndef, which compiles code if the macro is not defined (although the
``#else clause'' of an #ifndef directive will then be compiled if the macro is defined).
There is also an #if directive which compiles code depending on whether a compile-time
expression is true or false. (The expressions which are allowed in an #if directive are
somewhat restricted, however, so we won't talk much about #if here.)

Conditional compilation is useful in two general classes of situations:

 You are trying to write a portable program, but the way you do something is
different depending on what compiler, operating system, or computer you're
using. You place different versions of your code, one for each situation, between
suitable #ifdef directives, and when you compile the progam in a particular
environment, you arrange to have the macro names defined which select the
variants you need in that environment. (For this reason, compilers usually have
ways of letting you define macros from the invocation command line or in a
configuration file, and many also predefine certain macro names related to the
operating system, processor, or compiler in use. That way, you don't have to
change the code to change the #define lines each time you compile it in a
different environment.)

For example, in ANSI C, the function to delete a file is remove. On older Unix
systems, however, the function was called unlink. So if filename is a variable
containing the name of a file you want to delete, and if you want to be able to
compile the program under these older Unix systems, you might write

 #ifdef unix
 unlink(filename);
 #else
 remove(filename);
 #endif

288

Then, you could place the line

 #define unix

at the top of the file when compiling under an old Unix system. (Since all you're
using the macro unix for is to control the #ifdef, you don't need to give it any
replacement text at all. Any definition for a macro, even if the replacement text is
empty, causes an #ifdef to succeed.)

(In fact, in this example, you wouldn't even need to define the macro unix at all,
because C compilers on old Unix systems tend to predefine it for you, precisely
so you can make tests like these.)

 You want to compile several different versions of your program, with different
features present in the different versions. You bracket the code for each feature
with #ifdef directives, and (as for the previous case) arrange to have the right
macros defined or not to build the version you want to build at any given time.
This way, you can build the several different versions from the same source
code. (One common example is whether you turn debugging statements on or
off. You can bracket each debugging printout with #ifdef DEBUG and #endif, and
then turn on debugging only when you need it.)

For example, you might use lines like this:

 #ifdef DEBUG
 printf("x is %d\n", x);
 #endif

to print out the value of the variable x at some point in your program to see if it's
what you expect. To enable debugging printouts, you insert the line

 #define DEBUG

at the top of the file, and to turn them off, you delete that line, but the debugging
printouts quietly remain in your code, temporarily deactivated, but ready to
reactivate if you find yourself needing them again later. (Also, instead of inserting
and deleting the #define line, you might use a compiler flag such as -DDEBUG to
define the macro DEBUG from the compiler invocatin line.)

Conditional compilation can be very handy, but it can also get out of hand. When large

chunks of the program are completely different depending on, say, what operating

system the program is being compiled for, it's often better to place the different versions

in separate source files, and then only use one of the files (corresponding to one of the

versions) to build the program on any given system. Also, if you are using an ANSI

Standard compiler and you are writing ANSI-compatible code, you usually won't need

289

so much conditional compilation, because the Standard specifies exactly how the

compiler must do certain things, and exactly which library functions it much provide, so

you don't have to work so hard to accommodate the old variations among compilers and

libraries.

passing values to the compiler

There are different ways in which parameter data can be passed into and out of methods
and functions. Let us assume that a function B() is called from another function A(). In this
case A is called the ―caller function‖ and B is called the ―called function or callee
function‖. Also, the arguments which A sends to B are called actual arguments and the
parameters of B are called formal arguments.

Terminology

 Formal Parameter : A variable and its type as they appear in the prototype of the
function or method.

 Actual Parameter : The variable or expression corresponding to a formal
parameter that appears in the function or method call in the calling environment.

 Modes:

 IN: Passes info from caller to calle.
 OUT: Callee writes values in caller.
 IN/OUT: Caller tells callee value of variable, which may be updated by callee.

Important methods of Parameter Passing

1. Pass By Value : This method uses in-mode semantics. Changes made to formal

parameter do not get transmitted back to the caller. Any modifications to the formal
parameter variable inside the called function or method affect only the separate
storage location and will not be reflected in the actual parameter in the calling
environment. This method is also called as call by value.

290

filter_none
edit
play_arrow
brightness_4

// C program to illustrate
// call by value
#include <stdio.h>

void func(int a, int b)
{
 a += b;
 printf("In func, a = %d b = %d\n", a, b);
}
int main(void)
{
 int x = 5, y = 7;

 // Passing parameters
 func(x, y);

291

 printf("In main, x = %d y = %d\n", x, y);
 return 0;
}
Output:

In func, a = 12 b = 7

In main, x = 5 y = 7

Languages like C, C++, Java support this type of parameter passing. Java in fact is
strictly call by value.

Shortcomings:

 Inefficiency in storage allocation
 For objects and arrays, the copy semantics are costly

2. Pass by reference(aliasing) : This technique uses in/out-mode semantics.

Changes made to formal parameter do get transmitted back to the caller through
parameter passing. Any changes to the formal parameter are reflected in the
actual parameter in the calling environment as formal parameter receives a
reference (or pointer) to the actual data. This method is also called as call by
reference. This method is efficient in both time and space.

https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/
https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/

292

filter_none
edit
play_arrow
brightness_4

// C program to illustrate
// call by reference
#include <stdio.h>

void swapnum(int* i, int* j)
{
 int temp = *i;
 *i = *j;
 *j = temp;
}

int main(void)
{
 int a = 10, b = 20;

 // passing parameters
 swapnum(&a, &b);

 printf("a is %d and b is %d\n", a, b);
 return 0;
}
Output:

a is 20 and b is 10

C and C++ both support call by value as well as call by reference whereas Java
does‘nt support call by reference.

Shortcomings:

 Many potential scenarios can occur
 Programs are difficult to understand sometimes

Other methods of Parameter Passing

These techniques are older and were used in earlier programming languages like Pascal,
Algol and Fortran. These techniques are not applicable in high level languages.

1. Pass by Result : This method uses out-mode semantics. Just before control is
transfered back to the caller, the value of the formal parameter is transmitted back
to the actual parameter.T his method is sometimes called call by result. In general,
pass by result technique is implemented by copy.

293

2. Pass by Value-Result : This method uses in/out-mode semantics. It is a
combination of Pass-by-Value and Pass-by-result. Just before the control is
transferred back to the caller, the value of the formal parameter is transmitted back
to the actual parameter. This method is sometimes called as call by value-result

3. Pass by name : This technique is used in programming language such as Algol.
In this technique, symbolic ―name‖ of a variable is passed, which allows it both to
be accessed and update.
Example:
To double the value of C[j], you can pass its name (not its value) into the following
procedure.

4. procedure double(x);

5. real x;

6. begin

7. x:=x*2

8. end;

In general, the effect of pass-by-name is to textually substitute the argument in a
procedure call for the corresponding parameter in the body of the procedure.
Implications of Pass-by-Name mechanism:

 The argument expression is re-evaluated each time the formal parameter is
passed.

 The procedure can change the values of variables used in the argument
expression and hence change the expression‘s value.

The Standard C Library:

Input/Output

When we say Input, it means to feed some data into a program. An input can be given
in the form of a file or from the command line. C programming provides a set of built-in
functions to read the given input and feed it to the program as per requirement.

When we say Output, it means to display some data on screen, printer, or in any file.
C programming provides a set of built-in functions to output the data on the computer
screen as well as to save it in text or binary files.

The Standard Files

C programming treats all the devices as files. So devices such as the display are
addressed in the same way as files and the following three files are automatically
opened when a program executes to provide access to the keyboard and screen.

294

Standard File File Pointer Device

Standard input stdin Keyboard

Standard output stdout Screen

Standard error stderr Your screen

The file pointers are the means to access the file for reading and writing purpose. This
section explains how to read values from the screen and how to print the result on the
screen.

The getchar() and putchar() Functions

The int getchar(void) function reads the next available character from the screen and
returns it as an integer. This function reads only single character at a time. You can
use this method in the loop in case you want to read more than one character from the
screen.

The int putchar(int c) function puts the passed character on the screen and returns
the same character. This function puts only single character at a time. You can use this
method in the loop in case you want to display more than one character on the screen.
Check the following example –

#include <stdio.h>
int main() {

 int c;

 printf("Enter a value :");
 c = getchar();

 printf("\nYou entered: ");
 putchar(c);

 return 0;
}

When the above code is compiled and executed, it waits for you to input some text.
When you enter a text and press enter, then the program proceeds and reads only a
single character and displays it as follows −

295

$./a.out
Enter a value : this is test
You entered: t

The gets() and puts() Functions

The char *gets(char *s) function reads a line from stdin into the buffer pointed to
by s until either a terminating newline or EOF (End of File).

The int puts(const char *s) function writes the string 's' and 'a' trailing newline
to stdout.

NOTE: Though it has been deprecated to use gets() function, Instead of using gets,
you want to use fgets().

#include <stdio.h>
int main() {

 char str[100];

 printf("Enter a value :");
 gets(str);

 printf("\nYou entered: ");
 puts(str);

 return 0;
}

When the above code is compiled and executed, it waits for you to input some text.
When you enter a text and press enter, then the program proceeds and reads the
complete line till end, and displays it as follows −

$./a.out
Enter a value : this is test
You entered: this is test

The scanf() and printf() Functions

The int scanf(const char *format, ...) function reads the input from the standard input
stream stdin and scans that input according to the format provided.

The int printf(const char *format, ...) function writes the output to the standard output
stream stdout and produces the output according to the format provided.

https://www.tutorialspoint.com/c_standard_library/c_function_fgets.htm

296

The format can be a simple constant string, but you can specify %s, %d, %c, %f, etc.,
to print or read strings, integer, character or float respectively. There are many other
formatting options available which can be used based on requirements. Let us now
proceed with a simple example to understand the concepts better –

#include <stdio.h>
int main() {

 char str[100];
 int i;

 printf("Enter a value :");
 scanf("%s %d", str, &i);

 printf("\nYou entered: %s %d ", str, i);

 return 0;
}

When the above code is compiled and executed, it waits for you to input some text.
When you enter a text and press enter, then program proceeds and reads the input
and displays it as follows −

$./a.out
Enter a value : seven 7
You entered: seven 7

Here, it should be noted that scanf() expects input in the same format as you provided
%s and %d, which means you have to provide valid inputs like "string integer". If you
provide "string string" or "integer integer", then it will be assumed as wrong input.
Secondly, while reading a string, scanf() stops reading as soon as it encounters a
space, so "this is test" are three strings for scanf().

The last chapter explained the standard input and output devices handled by C
programming language. This chapter cover how C programmers can create, open,
close text or binary files for their data storage.

A file represents a sequence of bytes, regardless of it being a text file or a binary file. C
programming language provides access on high level functions as well as low level
(OS level) calls to handle file on your storage devices. This chapter will take you
through the important calls for file management.

297

Opening Files

You can use the fopen() function to create a new file or to open an existing file. This
call will initialize an object of the type FILE, which contains all the information
necessary to control the stream. The prototype of this function call is as follows −

FILE *fopen(const char * filename, const char * mode);

Here, filename is a string literal, which you will use to name your file, and
access mode can have one of the following values –

Sr.No. Mode & Description

1
r

Opens an existing text file for reading purpose.

2
w

Opens a text file for writing. If it does not exist, then a new file is created. Here
your program will start writing content from the beginning of the file.

3
a

Opens a text file for writing in appending mode. If it does not exist, then a new file
is created. Here your program will start appending content in the existing file
content.

4
r+

Opens a text file for both reading and writing.

5
w+

Opens a text file for both reading and writing. It first truncates the file to zero
length if it exists, otherwise creates a file if it does not exist.

6
a+

Opens a text file for both reading and writing. It creates the file if it does not exist.
The reading will start from the beginning but writing can only be appended.

298

If you are going to handle binary files, then you will use following access modes
instead of the above mentioned ones −

"rb", "wb", "ab", "rb+", "r+b", "wb+", "w+b", "ab+", "a+b"

Closing a File

To close a file, use the fclose() function. The prototype of this function is −

int fclose(FILE *fp);

The fclose(-) function returns zero on success, or EOF if there is an error in closing the
file. This function actually flushes any data still pending in the buffer to the file, closes
the file, and releases any memory used for the file. The EOF is a constant defined in
the header file stdio.h.

There are various functions provided by C standard library to read and write a file,
character by character, or in the form of a fixed length string.

Writing a File

Following is the simplest function to write individual characters to a stream −

int fputc(int c, FILE *fp);

The function fputc() writes the character value of the argument c to the output stream
referenced by fp. It returns the written character written on success otherwise EOF if
there is an error. You can use the following functions to write a null-terminated string to
a stream −

int fputs(const char *s, FILE *fp);

The function fputs() writes the string s to the output stream referenced by fp. It returns
a non-negative value on success, otherwise EOF is returned in case of any error. You
can use int fprintf(FILE *fp,const char *format, ...) function as well to write a string
into a file. Try the following example.

Make sure you have /tmp directory available. If it is not, then before proceeding, you
must create this directory on your machine.

#include <stdio.h>

main() {
 FILE *fp;

 fp = fopen("/tmp/test.txt", "w+");
 fprintf(fp, "This is testing for fprintf...\n");
 fputs("This is testing for fputs...\n", fp);
 fclose(fp);
}

299

When the above code is compiled and executed, it creates a new file test.txt in /tmp
directory and writes two lines using two different functions. Let us read this file in the
next section.

Reading a File

Given below is the simplest function to read a single character from a file −

int fgetc(FILE * fp);

The fgetc() function reads a character from the input file referenced by fp. The return
value is the character read, or in case of any error, it returns EOF. The following
function allows to read a string from a stream −

char *fgets(char *buf, int n, FILE *fp);

The functions fgets() reads up to n-1 characters from the input stream referenced by
fp. It copies the read string into the buffer buf, appending a null character to terminate
the string.

If this function encounters a newline character '\n' or the end of the file EOF before they
have read the maximum number of characters, then it returns only the characters read
up to that point including the new line character. You can also use int fscanf(FILE *fp,
const char *format, ...) function to read strings from a file, but it stops reading after
encountering the first space character.

#include <stdio.h>

main() {

 FILE *fp;
 char buff[255];

 fp = fopen("/tmp/test.txt", "r");
 fscanf(fp, "%s", buff);
 printf("1 : %s\n", buff);

 fgets(buff, 255, (FILE*)fp);
 printf("2: %s\n", buff);

 fgets(buff, 255, (FILE*)fp);
 printf("3: %s\n", buff);
 fclose(fp);

}

When the above code is compiled and executed, it reads the file created in the
previous section and produces the following result −

300

1 : This
2: is testing for fprintf...

3: This is testing for fputs...

Let's see a little more in detail about what happened here. First, fscanf() read
just This because after that, it encountered a space, second call is for fgets() which
reads the remaining line till it encountered end of line. Finally, the last call fgets() reads
the second line completely.

Binary I/O Functions

There are two functions, that can be used for binary input and output −

size_t fread(void *ptr, size_t size_of_elements, size_t number_of_elements, FILE
*a_file);

size_t fwrite(const void *ptr, size_t size_of_elements, size_t number_of_elements, FILE
*a_file);

Both of these functions should be used to read or write blocks of memories - usually
arrays or structures.

Fopen

The C library function FILE *fopen(const char *filename, const char *mode) opens
the filename pointed to, by filename using the given mode.

Declaration

Following is the declaration for fopen() function.

FILE *fopen(const char *filename, const char *mode)

Parameters

 filename − This is the C string containing the name of the file to be opened.

 mode − This is the C string containing a file access mode. It includes −

Sr.No. Mode & Description

1
"r"

Opens a file for reading. The file must exist.

301

2
"w"

Creates an empty file for writing. If a file with the same name already exists, its
content is erased and the file is considered as a new empty file.

3
"a"

Appends to a file. Writing operations, append data at the end of the file. The file
is created if it does not exist.

4
"r+"

Opens a file to update both reading and writing. The file must exist.

5
"w+"

Creates an empty file for both reading and writing.

6
"a+"

Opens a file for reading and appending.

Return Value

This function returns a FILE pointer. Otherwise, NULL is returned and the global
variable errno is set to indicate the error.

Example

The following example shows the usage of fopen() function.

#include <stdio.h>
#include <stdlib.h>

int main () {
 FILE * fp;

 fp = fopen ("file.txt", "w+");
 fprintf(fp, "%s %s %s %d", "We", "are", "in", 2012);

 fclose(fp);

 return(0);

302

}

Let us compile and run the above program that will create a file file.txt with the
following content −

We are in 2012

Now let us see the content of the above file using the following program −

#include <stdio.h>

int main () {
 FILE *fp;
 int c;

 fp = fopen("file.txt","r");
 while(1) {
 c = fgetc(fp);
 if(feof(fp)) {
 break ;
 }
 printf("%c", c);
 }
 fclose(fp);

 return(0);
}

Let us compile and run the above program to produce the following result −

We are in 2012

Fread

The C library function size_t fread(void *ptr, size_t size, size_t nmemb, FILE
*stream) reads data from the given stream into the array pointed to, by ptr.

Declaration

Following is the declaration for fread() function.

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream)

Parameters

 ptr − This is the pointer to a block of memory with a minimum size
of size*nmemb bytes.

 size − This is the size in bytes of each element to be read.

303

 nmemb − This is the number of elements, each one with a size of size bytes.

 stream − This is the pointer to a FILE object that specifies an input stream.

Return Value

The total number of elements successfully read are returned as a size_t object, which
is an integral data type. If this number differs from the nmemb parameter, then either
an error had occurred or the End Of File was reached.

Example

The following example shows the usage of fread() function.

#include <stdio.h>
#include <string.h>

int main () {
 FILE *fp;
 char c[] = "this is tutorialspoint";
 char buffer[100];

 /* Open file for both reading and writing */
 fp = fopen("file.txt", "w+");

 /* Write data to the file */
 fwrite(c, strlen(c) + 1, 1, fp);

 /* Seek to the beginning of the file */
 fseek(fp, 0, SEEK_SET);

 /* Read and display data */
 fread(buffer, strlen(c)+1, 1, fp);
 printf("%s\n", buffer);
 fclose(fp);

 return(0);
}

Let us compile and run the above program that will create a file file.txt and write a
content this is tutorialspoint. After that, we use fseek() function to reset writing pointer
to the beginning of the file and prepare the file content which is as follows −

this is tutorialspoint

304

string handling functions

String is an array of characters. In this guide, we learn how to declare strings, how to
work with strings in C programming and how to use the pre-defined string handling
functions.

We will see how to compare two strings, concatenate strings, copy one string to another
& perform various string manipulation operations. We can perform such operations
using the pre-defined functions of ―string.h‖ header file. In order to use these string
functions you must include string.h file in your C program.

String Declaration

Method 1:

char address[]={'T', 'E', 'X', 'A', 'S', '\0'};
Method 2: The above string can also be defined as –

char address[]="TEXAS";
In the above declaration NULL character (\0) will automatically be inserted at the end of
the string.

What is NULL Char ―\0‖?
'\0' represents the end of the string. It is also referred as String terminator & Null
Character.

String I/O in C programming

305

Read & write Strings in C using Printf() and Scanf() functions

#include <stdio.h>
#include <string.h>
int main()
{
 /* String Declaration*/
 char nickname[20];

 printf("Enter your Nick name:");

 /* I am reading the input string and storing it in nickname
 * Array name alone works as a base address of array so
 * we can use nickname instead of &nickname here
 */
 scanf("%s", nickname);

 /*Displaying String*/
 printf("%s",nickname);

 return 0;
}
Output:

Enter your Nick name:Negan
Negan
Note: %s format specifier is used for strings input/output

Read & Write Strings in C using gets() and puts() functions

#include <stdio.h>

306

#include <string.h>
int main()
{
 /* String Declaration*/
 char nickname[20];

 /* Console display using puts */
 puts("Enter your Nick name:");

 /*Input using gets*/
 gets(nickname);

 puts(nickname);

 return 0;
}
C – String functions

307

C String function – strlen

Syntax:

size_t strlen(const char *str)
size_t represents unsigned short
It returns the length of the string without including end character (terminating char ‗\0‘).

Example of strlen:

#include <stdio.h>
#include <string.h>
int main()
{
 char str1[20] = "BeginnersBook";
 printf("Length of string str1: %d", strlen(str1));
 return 0;
}
Output:

Length of string str1: 13
strlen vs sizeof
strlen returns you the length of the string stored in array, however sizeof returns the
total allocated size assigned to the array. So if I consider the above example again then
the following statements would return the below values.

strlen(str1) returned value 13.
sizeof(str1) would return value 20 as the array size is 20 (see the first statement in main
function).

C String function – strnlen

Syntax:

size_t strnlen(const char *str, size_t maxlen)
size_t represents unsigned short
It returns length of the string if it is less than the value specified for maxlen (maximum
length) otherwise it returns maxlen value.

Example of strnlen:

#include <stdio.h>
#include <string.h>

308

int main()
{
 char str1[20] = "BeginnersBook";
 printf("Length of string str1 when maxlen is 30: %d", strnlen(str1, 30));
 printf("Length of string str1 when maxlen is 10: %d", strnlen(str1, 10));
 return 0;
}
Output:
Length of string str1 when maxlen is 30: 13
Length of string str1 when maxlen is 10: 10

Have you noticed the output of second printf statement, even though the string length
was 13 it returned only 10 because the maxlen was 10.

C String function – strcmp

int strcmp(const char *str1, const char *str2)
It compares the two strings and returns an integer value. If both the strings are same
(equal) then this function would return 0 otherwise it may return a negative or positive
value based on the comparison.

If string1 < string2 OR string1 is a substring of string2 then it would result in a
negative value. If string1 > string2 then it would return positive value.
If string1 == string2 then you would get 0(zero) when you use this function for
compare strings.

Example of strcmp:

#include <stdio.h>
#include <string.h>
int main()
{
 char s1[20] = "BeginnersBook";
 char s2[20] = "BeginnersBook.COM";
 if (strcmp(s1, s2) ==0)
 {
 printf("string 1 and string 2 are equal");
 }else
 {
 printf("string 1 and 2 are different");
 }
 return 0;
}
Output:

309

string 1 and 2 are different
C String function – strncmp

int strncmp(const char *str1, const char *str2, size_t n)
size_t is for unassigned short
It compares both the string till n characters or in other words it compares first n
characters of both the strings.

Example of strncmp:

#include <stdio.h>
#include <string.h>
int main()
{
 char s1[20] = "BeginnersBook";
 char s2[20] = "BeginnersBook.COM";
 /* below it is comparing first 8 characters of s1 and s2*/
 if (strncmp(s1, s2, 8) ==0)
 {
 printf("string 1 and string 2 are equal");
 }else
 {
 printf("string 1 and 2 are different");
 }
 return 0;
}
Output:

string1 and string 2 are equal
C String function – strcat

char *strcat(char *str1, char *str2)
It concatenates two strings and returns the concatenated string.

Example of strcat:

#include <stdio.h>
#include <string.h>
int main()
{
 char s1[10] = "Hello";
 char s2[10] = "World";
 strcat(s1,s2);
 printf("Output string after concatenation: %s", s1);
 return 0;

310

}
Output:

Output string after concatenation: HelloWorld
C String function – strncat

char *strncat(char *str1, char *str2, int n)
It concatenates n characters of str2 to string str1. A terminator char (‗\0‘) will always be
appended at the end of the concatenated string.

Example of strncat:

#include <stdio.h>
#include <string.h>
int main()
{
 char s1[10] = "Hello";
 char s2[10] = "World";
 strncat(s1,s2, 3);
 printf("Concatenation using strncat: %s", s1);
 return 0;
}
Output:

Concatenation using strncat: HelloWor
C String function – strcpy

char *strcpy(char *str1, char *str2)
It copies the string str2 into string str1, including the end character (terminator char ‗\0‘).

Example of strcpy:

#include <stdio.h>
#include <string.h>
int main()
{
 char s1[30] = "string 1";
 char s2[30] = "string 2 : I‘m gonna copied into s1";
 /* this function has copied s2 into s1*/
 strcpy(s1,s2);
 printf("String s1 is: %s", s1);
 return 0;
}
Output:

311

String s1 is: string 2: I‘m gonna copied into s1
C String function – strncpy

char *strncpy(char *str1, char *str2, size_t n)
size_t is unassigned short and n is a number.
Case1: If length of str2 > n then it just copies first n characters of str2 into str1.
Case2: If length of str2 < n then it copies all the characters of str2 into str1 and appends
several terminator chars(‗\0‘) to accumulate the length of str1 to make it n.

Example of strncpy:

#include <stdio.h>
#include <string.h>
int main()
{
 char first[30] = "string 1";
 char second[30] = "string 2: I‘m using strncpy now";
 /* this function has copied first 10 chars of s2 into s1*/
 strncpy(s1,s2, 12);
 printf("String s1 is: %s", s1);
 return 0;
}
Output:

String s1 is: string 2: I‘m
C String function – strchr

char *strchr(char *str, int ch)
It searches string str for character ch (you may be wondering that in above definition I
have given data type of ch as int, don‘t worry I didn‘t make any mistake it should be int
only. The thing is when we give any character while using strchr then it internally gets
converted into integer for better searching.

Example of strchr:

#include <stdio.h>
#include <string.h>
int main()
{
 char mystr[30] = "I‘m an example of function strchr";
 printf ("%s", strchr(mystr, 'f'));
 return 0;
}
Output:

312

f function strchr
C String function – Strrchr

char *strrchr(char *str, int ch)
It is similar to the function strchr, the only difference is that it searches the string in
reverse order, now you would have understood why we have extra r in strrchr, yes you
guessed it correct, it is for reverse only.

Now let‘s take the same above example:

#include <stdio.h>
#include <string.h>
int main()
{
 char mystr[30] = "I‘m an example of function strchr";
 printf ("%s", strrchr(mystr, 'f'));
 return 0;
}
Output:

function strchr
Why output is different than strchr? It is because it started searching from the end of
the string and found the first ‗f‘ in function instead of ‗of‘.

C String function – strstr

char *strstr(char *str, char *srch_term)
It is similar to strchr, except that it searches for string srch_term instead of a single char.

Example of strstr:

#include <stdio.h>
#include <string.h>
int main()
{
 char inputstr[70] = "String Function in C at BeginnersBook.COM";
 printf ("Output string is: %s", strstr(inputstr, 'Begi'));
 return 0;
}
Output:

Output string is: BeginnersBook.COM
You can also use this function in place of strchr as you are allowed to give single char
also in place of search_term string.

313

Math functions :

log, sin, alike Other Standard C functions

C sin() cos() tan() exp() log() function:

 sin(), cos() and tan() functions in C are used to calculate sine, cosine
and tangent values.

 sinh(), cosh() and tanh() functions are used to calculate hyperbolic sine, cosine
and tangent values.

 exp() function is used to calculate the exponential ―e‖ to the xth power. log()
function is used to calculates natural logarithm and log10() function is used to
calculates base 10 logarithm.

 ‖math.h‖ header file supports all these functions in C language.

EXAMPLE PROGRAM FOR SIN(), COS(), TAN(), EXP() AND LOG() IN C:

C

1

2

3

4

5

6

7

8

9

10

11

#include <stdio.h>

#include <math.h>

int main()

{

 float i = 0.314;

 float j = 0.25;

 float k = 6.25;

 float sin_value = sin(i);

314

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

 float cos_value = cos(i);

 float tan_value = tan(i);

 float sinh_value = sinh(j);

 float cosh_value = cosh(j);

 float tanh_value = tanh(j);

 float log_value = log(k);

 float log10_value = log10(k);

 float exp_value = exp(k);

 printf("The value of sin(%f) : %f \n", i, sin_value);

 printf("The value of cos(%f) : %f \n", i, cos_value);

 printf("The value of tan(%f) : %f \n", i, tan_value);

 printf("The value of sinh(%f) : %f \n", j, sinh_value);

 printf("The value of cosh(%f) : %f \n", j, cosh_value);

 printf("The value of tanh(%f) : %f \n", j, tanh_value);

 printf("The value of log(%f) : %f \n", k, log_value);

 printf("The value of log10(%f) : %f \n",k,log10_value);

 printf("The value of exp(%f) : %f \n",k, exp_value);

 return 0;

}

OUTPUT:

The value of sin(0.314000) : 0.308866

The value of cos(0.314000) : 0.951106
The value of tan(0.314000) : 0.324744

The value of sinh(0.250000) : 0.252612

315

The value of cosh(0.250000) : 1.031413

The value of tanh(0.250000) : 0.244919

The value of log(6.250000) : 1.832582

The value of log10(6.250000) : 0.795880

The value of exp(6.250000) : 518.012817

OTHER INBUILT ARITHMETIC FUNCTIONS IN C:

 ―math.h‖ and ―stdlib.h‖ header files support all the arithmetic functions in C
language. All the arithmetic functions used in C language are given below.

 Click on each function name below for detail description and example programs.

Function Description

abs ()

This function returns the absolute value of an integer.

The absolute value of a number is always positive.

Only integer values are supported in C.

floor ()

This function returns the nearest integer which is less

than or equal to the argument passed to this function.

round ()

This function returns the nearest integer value of the

float/double/long double argument passed to this

function. If decimal value is from ―.1 to .5‖, it returns

integer value less than the argument. If decimal value

is from ―.6 to .9‖, it returns the integer value greater

than the argument.

ceil ()

This function returns nearest integer value which is

greater than or equal to the argument passed to this

function.

sin () This function is used to calculate sine value.

cos () This function is used to calculate cosine.

http://fresh2refresh.com/c/c-arithmetic-functions/c-abs-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-floor-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-round-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-ceil-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-sin-cos-tan-exp-log-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-sin-cos-tan-exp-log-function/

316

cosh () This function is used to calculate hyperbolic cosine.

exp ()

This function is used to calculate the exponential ―e‖

to the xth power.

tan () This function is used to calculate tangent.

tanh () This function is used to calculate hyperbolic tangent.

sinh () This function is used to calculate hyperbolic sine.

log () This function is used to calculates natural logarithm.

log10.(.) This function is used to calculates base 10 logarithm.

sqrt ()

This function is used to find square root of the

argument passed to this function.

pow () This is used to find the power of the given number.

trunc.(.)

This function truncates the decimal value from

floating point value and returns integer value.

Standard C functions

In this tutorial, you will be introduced to functions (both user-defined and standard

library functions) in C programming. Also, you will learn why functions are used in

programming.

A function is a block of code that performs a specific task.

Suppose, you need to create a program to create a circle and color it. You can create

two functions to solve this problem:

 create a circle function

 create a color function

http://fresh2refresh.com/c/c-arithmetic-functions/c-sin-cos-tan-exp-log-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-sin-cos-tan-exp-log-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-sin-cos-tan-exp-log-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-sin-cos-tan-exp-log-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-sin-cos-tan-exp-log-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-sin-cos-tan-exp-log-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-sin-cos-tan-exp-log-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-sqrt-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-pow-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-trunc-function/

317

Dividing a complex problem into smaller chunks makes our program easy to understand

and reuse.

Types of function

There are two types of function in C programming:

 Standard library functions

 User-defined functions

Standard library functions

The standard library functions are built-in functions in C programming.

These functions are defined in header files. For example,

 The printf() is a standard library function to send formatted output to the screen (display

output on the screen). This function is defined in the stdio.h header file.

Hence, to use the printf()function, we need to include the stdio.h header file

using #include <stdio.h>.

 The sqrt() function calculates the square root of a number. The function is defined in

the math.h header file.

User-defined function

You can also create functions as per your need. Such functions created by the user are

known as user-defined functions.

How user-defined function works?

#include <stdio.h>

void functionName()

{

}

int main()

{

https://www.programiz.com/c-programming/library-function
https://www.programiz.com/c-programming/c-user-defined-functions

318

 functionName();

}

The execution of a C program begins from the main() function.

When the compiler encounters functionName();, control of the program jumps to

 void functionName()

Advantages of user-defined function

1. The program will be easier to understand, maintain and debug.

2. Reusable codes that can be used in other programs

3. A large program can be divided into smaller modules. Hence, a large project can be

divided among many programmers.

